Fluor-ferro-leakeite, $NaNa_2(Fe_2^2+Fe_2^3+Li)Si_8O_{22}F_2$, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.

FRANK C. HAWTHORNE,¹ ROBERTA OBERTI,² LUCIANO UNGARETTI,² LUISA OTTOLINI,² JOEL D. GRICE,³ AND GERALD K. CZAMANSKE⁴

¹Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ²C.N.R. Centro di Studio per la Cristallochimica e la Cristallografia, via Abbiategrasso 209, I-27100 Pavia, Italy ³Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4 Canada ⁴U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025, U.S.A.

Abstract

Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, $D_{meas} = 3.37$ g/cm³, $D_{calc} = 3.34$ g/cm³. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; $X \wedge c = 10^{\circ}$ (in β obtuse), Y = b, $Z \wedge a = 4^{\circ}$ (in β obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, $\alpha = 1.675(2)$, $\beta = 1.683(2)$, $\gamma = 1.694(1)$; 2V = $87(2)^{\circ}$; dispersion is not visible because of the strong absorption.

Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) Å, $\beta = 103.87(7)^{\circ}$, V = 906.0(1) Å³, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO₂ 51.12, Al₂O₃ 1.13, TiO₂ 0.68, Fe₂O₃ 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na₂O 9.22, K₂O 1.19, Li₂O 0.99, F 2.87, H₂O_{calc} 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K_{0.23}Na_{0.76})(Na_{1.97}Ca_{0.03})(Mg_{0.46}Fe²_{1.14}Mn²_{0.59}Zn_{0.07}Fe²_{1.59}-Ti_{0.08}Al_{0.02}Li_{0.61})(Si_{7.81}Al_{0.19})O₂₂(F_{1.39}OH_{0.61}). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa₂(Fe²₂+Fe³₂+Li)Si₈O₂₂F₂, is related to leakeite, NaNa₂(Mg₂Fe³₃+Li)Si₈O₂₂(OH)₂, by the substitutions Fe²⁺ \rightarrow Mg and F \rightarrow OH.

INTRODUCTION

Leakeite is a newly described amphibole from the Kailidongri manganese mine, Madhya Pradesh, India (Hawthorne et al. 1992). Its ideal formula is NaNa₂- $(Mg_2Fe_3^{3+}Li)Si_8O_{22}(OH)_2$, which may be formally derived from the end-member ferri-eckermannite. Na- $Na_2(Mg_4Fe^{3+})Si_8O_{22}(OH)_2$, by the substitution $Fe^{3+} + Li$ \rightarrow Mg + Mg. Leakeite thus contains essential ^[6]Li. Hawthorne et al. (1993) showed that the leakeite substitution is also a feature of alkali amphiboles in peralkaline granitic rocks at Questa, New Mexico (Czamanske and Dillet 1988). During this work, a new amphibole was discovered, the "fluor-ferro-" equivalent of leakeite; a formal description of the amphibole is given here. The new species and the new name have been approved by the International Mineralogical Association Commission on New Minerals and Mineral Names. Holotype material is deposited in the Canadian Museum of Nature, Ottawa.

OCCURRENCE

Fluor-ferro-leakeite is present in light gray, mildly peralkaline porphyry (sample 82QC49, 76.0 wt% SiO₂) that occurs as a peripheral phase of the Canada Pinabete pluton, located along the west front of the Sangre de Cristo Range, north-central New Mexico (Dillet and Czamanske 1987; Czamanske and Dillet 1988), latitude 36°46.47' N, longitude 105°33.93' W. As reported by Czamanske and Dillet (1988), the peralkaline porphyry contact phase of the small, high-level Canada Pinabete ($\sim 2.5 \text{ km}^2$) and Virgin Canyon ($\sim 0.5 \text{ km}^2$) plutons typically contains the unusual mafic-mineral assemblage alkali amphibole + sodic pyroxene + tetrasilicic mica in relatively reduced rocks bearing ilmenite + titanite (Wones 1989). The bulk of each pluton is composed of hypersolvus, equigranular, metaluminous biotite granite containing 72–75 wt% SiO₂.

Detailed analysis of alkali amphiboles in a suite of samples from the two peralkaline porphyries has shown

hki

Oxide	wt%	Atom	Number
SiO ₂	51.12	Si	7.81
Al ₂ O ₃	1.13	AI	0.19
TIÔ, Č	0.68	Sum	8.00
Fe ₂ Ō ₃	16.73		
FeŌ	8.87	AI	0.02
MgO	2.02	Ti	0.08
MnO	4.51	Fe ³⁺	1.93
ZnO	0.57	Fe ²⁺	1.14
Li ₂ Ö	0.99	Mn ²⁺	0.59
CaO	0.15	Ma	0.46
Na₀O	9.22	Zn	0.07
K₀Ô	1.19	Li	0.61
F	2.87	Sum	4.90
H₀O*	0.60		
Ó≡ F	-1.21	Ca	0.03
		Na	1.97
Sum	99.44	Sum	2.00
		Na	0.76
		к	0.23
		Sum	0.99
		OH	0.61
		F	1.39

them to range in composition from katophoritic to arfvedsonitic, generally with high Mn and F contents; their Fe/(Fe + Mg) ratios are quite variable (Czamanske and Dillet 1988; Hawthorne et al. 1993). Fluor-ferroleakeite occurs in sample 82QC49 as myriad, small (0.05– 0.2 mm) irregular patches in the quenched, fine-grained groundmass of the rock and as sparse, larger elongate grains with irregular margins. Tetrasilicic mica is sparse in sample 82QC49, and magnetite and titanite were not

PHYSICAL AND OPTICAL PROPERTIES Fluor-ferro-leakeite is bluish black to black with a vitreous luster. It has a bluish gray streak and shows no fluorescence under long-wave or short-wave ultraviolet light. When separated from a coarse crush of the rock, grains are prismatic on [001] and are bounded by $\{110\}$ cleavage faces with the prism direction terminated by irregular fractures. Fluor-ferro-leakeite has a Mohs hardness of ~ 6 and is brittle; it has the characteristic perfect {110} cleavage of monoclinic amphiboles, intersecting at \sim 56°. The density, measured by flotation, is 3.37 g/cm³, compared with the calculated density of 3.34 g/cm³. A spindle stage was used to orient a crystal for measurement of refractive indices and 2V by extinction curves. The optical orientation was determined by transferring the crystal from the spindle stage to a precession camera and measuring the relative axial relations by X-ray dif-

fraction. In transmitted light, fluor-ferro-leakeite is

strongly pleochroic with X = very dark indigo blue, Y =

gray blue, Z = yellow green, $X \land c = 10^{\circ}$ (in β obtuse), $Y = b, Z \land a = 4^{\circ}$ (in β obtuse); absorption X > Y > Z.

It is biaxial positive with indices of refraction $\alpha = 1.675(2)$,

 $\beta = 1.683(2), \gamma = 1.694(1)$ measured with gel-filtered Na

found.

TABLE 1. Chemical analysis and formula unit* for fluor-ferroleakeite

TABLE 2. Indexed powder pattern for fluor-ferro-leakeite

/ 8 \

d. (Å)

110	Calc (14)	woos (* */	
120	8 969	8 998	16
110	8 400	8.426	45
T11	4 881	4 882	9
540	4 484	4.481	54
111	4 031	4.033	11
131	3 868	3 867	6
501	3,658	3,660	10
121	3 402	3 404	57
040	3 363	3 262	12
240	3.202	3 1 2 2	20
510	0.120	0.122	29
241	2.900	2.900	30
151	2.929	2.929	10
330	2.800	2.800	12
151	2.710	2.710	100
061	2.587	2.585	38
202	2.536	2.536	92
170	2.474	2.472	9
350	2.375	2.376	5
351	2.322	2.322	19
ī71	2.287	2.287	12
312	2.268	2.268	01
331	2.268	2.268	2 1
242	2.208	2.207	5
261	2.165	2.165	26
202	2.069	2.068	10
351	2.024	2.024	8
402	2.003	2.003	7
242	1.878	1.878	4
512	1 735	1.734	6
133	1 695	1 695	1
0 10 1	1.695	1.695	} 12
550	1.680	1.680	{
282	1.680	1 680	} 9
202 161	1.654	1.654	J 10
401 791	1.034	1.634	7
401	1 621	1 620	. /
400	1.031	1.032	0
1,11,0	1.007	1.007	ס
100	1.000	1.000	25
403	1.560	1.560)
402	1.570	1.570	3
263	1.515	1.515	21
0,12,0	1.495	1.495	9
443	1.495	1.495	J
2,10,2	1.464	1.465	4
642 	1.442	1.442	4
5/2	1.442	1.442	J
661	1.430	1.430	9
533	1.420	1.419	4
711	1.394	1.394	. 4
590	1.376	1.376	6
313	1.376	1.376	j u
710	1.354	1.354	ء (
553	1.354	1.354	ſ
263	1.345	1.345) 6
333	1.344	1.345	i u
1,11,2	1.340	1.340	6
204	1.328	1.327	4
6 81	1.317	1.317) 。
T14	1.317	1.317) °
552	1.288	1.288	ĺ
2,12,2	1.288	1.288	12
404	1.268	1.268	์ 5
			-
Note: Cell: a	a = 9.792(1), b = 17	.938(1), c = 5.3133(4) A, β = 103.87(7) ^α

light ($\lambda = 589.9$ nm); $2V_z = 87(2)$, $2V_{calc} = 81^\circ$. The dispersion is not visible because of strong absorption.

CHEMICAL COMPOSITION

Fluor-ferro-leakeite was analyzed primarily by electron microprobe using a Cameca SX-50 operating in the wavelength-dispersive mode with excitation voltage 15

1

kV, specimen current 20 nA, peak-count time 20 s, and background-count time 10 s. The following standards and crystals were used for $K\alpha$ X-ray lines: Si, Ca: tremolite, PET; Ti: hornblende, LiF; Fe: arfvedsonite, LiF; Mn: tephroite, LiF; Mg: tremolite, TAP; Na, Al: albite, TAP; K: orthoclase, PET; F: fluor-riebeckite, TAP; Zn: willemite, LiF. Data reduction was performed using the $\phi(\rho Z)$ procedure of Pouchou and Pichoir (1984, 1985). Li was analyzed by ion microprobe according to the procedure of Ottolini et al. (1993). The average of ten analyses on a single grain is given in Table 1.

Refinement of the crystal structure of fluor-ferro-leakeite (Hawthorne et al. 1993) showed Li to be ordered at the M3 site, showed Mn to be in the divalent state, and allowed the Fe^{3+}/Fe^{2+} ratio to be derived.

X-RAY CRYSTALLOGRAPHY

X-ray precession photographs with Zr-filtered MoK α X-radiation are compatible with Laue symmetry 2/m, and the condition for reflections to be present, h + k = 2n, indicates that the lattice is C centered. Long-exposure photographs (80 h) show no sign of any violating reflections. The possible space groups are C2/m, C2, and Cm; crystal-structure refinement confirmed the space group C2/m (Hawthorne et al. 1993).

A small amount of separate was ground to a grain size of approximately 2 μ m and mounted in a standard aluminum holder. The surface of the powder was chopped with a razor blade to reduce preferred orientation. The diffraction pattern was recorded on a Philips PW 1710 diffractometer with graphite-monochromatized CuK α X-radiation. Peak positions were measured by fitting a five-point parabolic curve to the top of the diffraction peaks, followed by correction for α_1 - α_2 splitting; NBS Si was used as a standard. Peak intensities were estimated visually. Cell dimensions were refined from the corrected d values using the program CELREF (Appleman and Evans 1973); the indexed powder pattern and refined cell dimensions are given in Table 2.

DISCUSSION

End-member fluor-ferro-leakeite has the formula $NaNa_2(Fe_2^{2+}Fe_2^{3+}Li)Si_8O_{22}F_2$. This may be derived from end-member leakeite by the homovalent substitutions $Fe^{2+} \rightarrow Mg$ and $F \rightarrow OH$ and from end-member arfved-

sonite by the substitutions $\text{Li} + \text{Fe}^{2+} \rightarrow 2\text{Fe}^{2+}$ and $\text{F} \rightarrow \text{OH}$. Hawthorne (1976) showed that C-group cation sums are anomalously low in alkali amphiboles. This and other apparent anomalies in alkali amphibole stoichiometry (Si contents > 8 apfu, low C-group cation sums, and A-site sums > 1 apfu) are probably due to incomplete chemical analyses of amphiboles that may contain significant Li (Hawthorne et al. 1993). Thus, fluor-ferro-leakeite may be a more common constituent of peralkaline granites than its recent discovery would suggest.

ACKNOWLEDGMENTS

We thank George A. Lager for his comments on this manuscript. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada Operating, Equipment, and Infrastructure Grants to F.C.H.

References cited

- Appleman, D.E., and Evans, H.T., Jr. (1973) Job 9214: Indexing and least-squares refinement of powder diffraction data. U.S. National Technical Information Service, Document PB 216 188.
- Czamanske, G.K., and Dillet, B. (1988) Alkali amphibole, tetrasilicic mica, and sodic pyroxene in peralkaline siliceous rocks, Questa caldera, New Mexico. American Journal of Science, 288-A, 358-392.
- Dillet, B., and Czamanske, G.K. (1987) Aspects of the petrology, mineralogy, and geochemistry of the granitic rocks associated with Questa caldera, northern New Mexico. U.S. Geological Survey Open-File Report 87-258, 238 p.
- Hawthorne, F.C. (1976) The crystal chemistry of the amphiboles: V. The structure and chemistry of arfvedsonite. Canadian Mineralogist, 14, 346-365.
- Hawthorne, F.C., Oberti, R., Ungaretti, L., and Grice, J.D. (1992) Leakeite, NaNa₂(Mg₂Fe₃³⁺Li)Si₈O₂₂(OH)₂, a new amphibole from the Kajlidongri manganese mine, Jhabua district, Madhya Pradesh, India. American Mineralogist, 77, 1112-1115.
- Hawthorne, F.C., Ungaretti, L., Oberti, R., Bottazzi, P., and Czamanske, G.K. (1993) Li: An important component in igneous alkali amphiboles. American Mineralogist, 78, 733-745.
- Ottolini, L., Bottazzi, P., and Vannucci, R. (1993) Quantification of lithium, beryllium and boron in silicates by secondary ion mass spectrometry using conventional energy filtering. Analytical Chemistry, 65, 1960– 1968.
- Pouchou, J.L., and Pichoir, F. (1984) A new model for quantitative analysis: Part I. Application to the analysis of homogeneous samples. La Recherche Aerospatiale, 3, 13-38.
- ——(1985) 'PAP' φ(ρZ) procedure for improved quantitative microanalysis. In Microbeam Analysis, 104–160.
- Wones, D.R. (1989) Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist, 74, 744–749.

MANUSCRIPT RECEIVED MARCH 4, 1995 MANUSCRIPT ACCEPTED AUGUST 22, 1995