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Thermodynamics of the amphiboles: Fe-Mg cummingtonite solid solutions
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ABSTRACT

A thermodynamic solution model for the ferromagnesian amphiboles is developed. The
model accounts explicitly for intersite nonconvergent cation ordering of FeH and Mg
between octahedral Ml, M2, M3, and M4 sites and intrasite interaction energies arising
from size-mismatch of unlike cations. The model is formulated with 15 parameters: two
standard-state contributions, three ordering energies involving the exchange of FeH and
Mg between the four crystallographically distinct sites, six reciprocal terms that describe
the noncoplanarity of the Gibbs energy of mechanical mixing in composition-ordering
space, and four regular-solution type parameters involving FeH-Mg interaction on each
site. The model may be readily collapsed to approximations that distinguish cation or-
dering over only three sites (MI3, M2, and M4) or two sites (M123 and M4), or that
assume the absence of ordering (i.e., a macroscopic model), in which case the number of
parameters decreases to 10, 6, and 3, respectively. The proposed model is calibrated for
the ferromagnesian monoclinic amphiboles, under the assumptions of energetic equiva-
lency of the M I and M3 sites and the absence of excess volume or excess vibrational
entropy, using the X-ray site occupancy data of Hirschmann et al. (1994) and the phase
equilibrium data of Fonarev and Korolkov (1980). Reference-state thermodynamic quan-
tities for magnesio-cummingtonite [Mg7Sis022(OH)2] and grunerite [Fe7Sis022(OH)2] are
derived from previously published results. The calibrated model is internally consistent
with the database of Berman (1988) and the work of Sack and Ghiorso (1989) on ferro-
magnesian orthopyroxene. Gibbs energy of mixing, enthalpy of mixing, and activity-com-
position relation plots are constructed from the calibration.

INTRODUCTION with this compositionally simple subsystem are twofold:
(1) only FeH-Mg cation ordering on octahedral sites is

Amphiboles are critical petrogenetic indicators in ig- operative because there are no major coupled substitu-
neous and metamorphic systems. They have been uti- tions and no tetrahedral site ordering, and (2) natural
lized as temperature, pressure, and reaction-rate sensors parageneses exist to which the resulting thermodynamic
for a broad range of P- T conditions, and amphibole-bear- formulation can be applied directly.
ing assemblages have found application as a means of The thermodynamic model proposed here is based upon
estimating the fH,o and, indirectly, the fluid composition our experience with other ferromagnesian silicates (Sack
present under the conditions ofrock formation. As can- and Ghiorso, 1989, 1994a, 1994b, 1994c; Hirschmann,
didates for thermodynamic models of solid-solution en- 1991) and oxide minerals (Ghiorso, 1990a; Sack and
ergetics, the amphiboles pose a formidable but fascinat- Ghiorso 1991a, 1991b; Ghiorso and Sack, 1991). Al-
ing challenge. They are multi site reciprocal solutions that though the amphiboles are structurally more complex,
exhibit a high degree of coupled substitution and form our approach to construction of the model is in principle
solid-solution series with wide compositional variation. identical. We propose a model that accounts explicitly
Despite this apparent complexity, the petrologic impor- for: (1) the temperature dependence of cation ordering of
tance of the amphiboles encourages attempts toward a FeH and MgH over available crystallographic sites, and
comprehensive thermodynamic formulation. In this pa- (2) the excess enthalpy associated with size-mismatch
per, we take a first step toward this goal with the for- substitution of FeH and MgH on individual sites. We
mulation and calibration of a thermodynamic model for demonstrate that, as is the case for all mineral solid so-
the monoclinic ferromagnesian amphibole solid solutions lutions that exhibit cation ordering, calibration of this
(cummingtonite-grunerite series). The reasons for starting model requires three diverse datasets: (I) information on
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the thermodynamic properties of end-member (standard-
state) compositions, (2) the temperature and composi-
tional dependence of cation ordering, and (3) the com-
positions of ferromagnesian amphibole coexisting with
other mineral phases in FeH-Mg exchange equilibrium.
Fortunately, experimental data for the ferromagnesian
amphiboles adequately constrain the end-member prop-
erties, and recent experimental and analytical work
(Hirschmann et aI., 1994) documents the temperature and
compositional dependence of cation ordering. These data,
when combined with experimental constraints on the sta-
bility of cummingtonite solid solutions coexisting with
orthopyroxene, H20, and quartz, allow calibration of the
parameters of the model. Our model incorporates new
experimental data and represents a major revision of at-
tempts to determine the solution properties of the cum-
mingtonite series made over the last three decades
(Mueller, 1961, 1962; Saxena, 1973; Fonarev, 1981;
Ganguly, 1982).

THERMODYNAMIC FORMULATION

Our philosophical approach in formulating a thermo-
dynamic model for the Fe-Mg cummingtonite solid so-
lutions is to construct a model that is extensible in com-
position. We intend to use the model proposed here as a
base for developing a formulation for the amphibole
quadrilateral and, ultimately, for a description of the en-
ergetics of aluminous orthoamphibole and hornblende.
Subsequent extensions should be additive and not neces-
sitate reformulation or recalibration of the constituent
subsystems. For this reason, the formulation proposed
here will make allowance for contributions to the ener-
getics of mixing, which may be of minor significance in
the (FeH ,Mg) monoclinic series but which must be in-
cluded in light of the potential contribution to other am-
phibole solid solutions. Of paramount importance to this
issue of extensibility is the formulation of a model that
accounts explicitly for the configurational entropy arising
from long-range, nonconvergent cation ordering.

Formulation of a four-site, nonconvergent
cation-ordering model

In the ferromagnesian amphiboles the Fe2+ and MgH
ions occupy four crystallographically distinct sites, des-
ignated M1-M4. The Ml, M2, and M3 sites are octa-
hedrally coordinated by apical 0 atoms of upward and
downward pointing, double-chain silicate tetrahedra,
whereas the M4 site is coordinated by basal 0 atoms
from adjacent, double-chain "I-beam" units (Hawthorne,
1981). In addition, the M1 and M3 cations are respec-
tively cis- and trans-coordinated with associated mono-
valent anions. There are two Ml, M2, and M4 sites per
formula unit [M7Sis022(OH)2, M = Fe2+ or MgH] and
one M3 site. The large and distorted M4 site displays the
strongest preference for FeH over MgH. M6ssbauer spec-
tra of a wide range of cummingtonite-grunerite solid so-
lutions (Bancroft et aI., 1967; Hafner and Ghose, 1971;
Ghose and Weidner, 1972; Barabanov and Tomilov,
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1973; Ying et aI., 1989) and anthophyllite solid solutions
(Seifert and Virgo, 1974; Seifert, 1978; Law, 1989) have
been interpreted as though FeH and MgH were randomly
distributed over the remaining M 1, M2, and M3 octahedral
sites. X-ray studies indicate that this interpretation is incor-
rect in detail, with FeH -MgH ordering occurring between

the M2 site and the combined monovalent, anion-coor-
dinated Ml + M3 (hereafter M13) sites (Hawthorne,
1983; Hirschmann et aI., 1994). There is little evidence
for a statistically significant FeH-Mg ordering between
the M 1 and M3 sites (Hirschmann et aI., 1994), but this
ordering may become important with AI-substitution on
the M2 site or halogen substitution on the monovalent
anion site. Accordingly, we develop a general four-site
formulation that will eventually be applicable to exten-
sions out of the binary.

For the ferromagnesian amphiboles, the axes of com-
position-ordering space (Thompson, 1969, 1970) may be
defined in terms of one composition variable,

r = 2XFe -

and three ordering variables,

(1)

(2a)

(2b)

(2c)

where XFeis the mole fraction of the Fe7Sis02iOH)2 com-
ponent and X~e refers to the mole fraction of Fe on the
ith crystallographic site. Definitions of site mole fractions
consistent with Equations 1 and 2 are provided in Table
1. We seek a parameterization for the molar Gibbs free
energy the solution G, defined by Thompson (1969,
1970) as

G = -TSeonr + G* (3)

where G* is the vibrational molar Gibbs free energy of
the solution, T is the absolute temperature, and Seonris
the configurational entropy of mixing. The last may be
written as

Sconr= -R(2X~lln X~l + 2X1t~ln X~ + 2X~2ln X~2

+ 2X~4ln X~4 + 2X~ln X~) (4)

where R is the gas constant. We assume that G* may be
expressed as a truncated second-order Taylor expansion
in both composition and ordering variables:

G* = G~ + G~r + G~Sl + G~S2+ G~S3+ G~rr2

(5)

which, as we shall see below, is consistent with the as-
sumption of symmetric regular-solution type interactions
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TABLE1. Definitions of site mole fractions

Four-site model Three-site model Two-site model

f

5,
5,
53

5'3

5'23
XM1

F.

XM'F.
XM3

Fe
XM4

F.

XM1Mg

XM'Mg

XM3Mg

XM4Mg

XM13
F.

XM13Mg

XM123
F.

XM123Mg

"hX~e1 + "hXre2 + %X~3 + "hX~e4- 1
X~e4 - Xr~
Xre4 - X~e2
Xre4 - X~e3

'!, + 1, - '1,5, + 'hs, + 'hs3
'!, + 1, + 'hS, - '1,5, + 'hs3

'!, + 1, + 'hS, + 'hs, - 6hs3

'!, + 1, + 'hS, + 'hs, + 'hs,
~-%+%S1-%S2-%S3
'!, - 1, - 'hS, + '1,5, - 'hs3
'!, - 1, - 'hS, - 'hs, + '1,53
'!, - 1, - 'hS, - 'hs, - 'hs, '1. - 1, - 3hs'3 - 'hs,

'1. + 1, - "hS,3 + 'hs,
'!, - 1, + "hS,3 - 'hs,

Note: f= 2XF. - 1.

1,-f1+ ~ - 2,4.5123

'!, - 1, + 'hS123

between Fe2+ and Mg cations on equivalent sites. The
Taylor expansion coefficients, (Jr, of Equation 5 consti-
tute 15 parameters meant to embody energetic conse-
quences of both standard-state and mixing contributions.
In order to see this distinction more clearly, it is conve-
nient to recast the Taylor expansion coefficients into an
equivalent, but arguably more intuitive, set of 15 pre-
ferred model parameters. There are innumerable ways to
effect this transformation, but we will be guided in our
selection by a close examination of the topology of S conf

within composition-ordering space.
Sconf is a function of r, 51, 52' and 53(Table 1) and is

zero for the end-member compositions Mg7Sis022(OH)2
(Cm) and Fe7Sis022(OH)2 (Gn) and for 14 intermediate
compositions possessing cation distributions correspond-
ing to perfectly ordered or antiordered configurations.
These nodes of zero Sconfare referred to as the vertices of
composition-ordering space, which we enumerate in Ta-
ble 2. The Gibbs free energies of the internal nodes may
be related to those of the end-members by defining recip-
rocal exchange reactions, e.g.,

= Fer4Mg~fl MgrZMgM3SisOzz(OH)2

+ Mgr4Fer'Fer2FeM3SisOzz(OH)z. (6)

The free energy change corresponding to Equation 6 is
denoted ~G~.IZ3,4' (We adopt a notation for naming re-
ciprocal reactions by designating Fe-occupation of sites
in the products; ~G~, 123,4refers to the pure Mg and Fe
end-members reacting to form one formula unit with Fe
on the MI, M2, and M3 sites and Mg on the M4 site,
and another with Fe on the M4 site and Mg on the MI,
M2, and M3 sites.) A total of seven reactions of this type
may be written (Table 3), but only six of these are linearly
independent. This is because the reciprocal exchange en-
ergies correspond physically to departures from linearity

in the mechanical Gibbs energy of mixing defined for
each bounding binary of composition-ordering space. As
this space is four-dimensional, there are (4. 3)/2 binary
subsystems and therefore six unique exchange energies.
This redundancy can be quantified by computing each of
the seven exchange energies in terms of our model pa-
rameterization of G(r, 51, 5z, 53), e.g., by substituting into
Equation 5, ~G~,123.4evaluates to:

G(Y,,-l,-l,-l) + G( -Y"l,l,l)

- G(l,O,O,O)- G( -1,0,0,0)

+ 2(G:',s, + G:',S2 + G:'.s, + G~,S2 + G~,s, + G:,.s,).
(7)

Examination of these seven expansions reveals the iden-
tity ~G~,14.23 + ~G~,12.34 + ~G~,13,34 = ~G~,234,1 +
~G~,134.2 + ~G~,IZ4,3 + ~G~,123.4'We choose ~G~,14.Z3as
the dependent parameter.

In addition to the six reciprocal exchange energies, it
is logical to add to the list of preferred parameters the
Gibbs free energies of the two end-members (G ~m and
G &J and four intrasite Fe2+-Mg interaction energies. The

latter may be conveniently evaluated in terms of regular-
solution-like, symmetric binary interactions associated
with unlike cations on a given site. These we denote WI'
Wz, W3, and W4 for the Ml, M2, M3 and M4 sites, re-
spectively. As an example of their definition, W4 is relat-
ed to the vibrational Gibbs energy at the midpoint
(-5h,I~,Yz,Yz)of the Mg7Sisozz(OHM-l,0,0,Q) - Fer4-
Mgr'Mgr2MgM3Sis022(OHb (-J,4,I,I,I)join, that is

G*(Y,,~,~,~) = ~[G*(-Y"l,l,l) + G*(-I,O,O,O)]

(2W4)
+~. (8)



-1 -'h -'h -'h 'h 3h

Four-site formulation
FeMgMgMg FeMgMgFe FeFeMgMg FeFeMgFe

MgMgMgMg MgMgMgFe MgFeMgMg MgFeMgFe FeMgFeMg FeMgFeFe
MgMgFeMg MgMgFeFe MgFeFeMg MgFeFeFe

Three-site formulation
FeMgMgMg FeFeMgFe

MgMgMgMg MgFeMgFe FeMgFeMg
MgMgFeMg MgFeFeFe

Two-site formulation

aG
= a (9a)

as,

aG
= a (9b)

aS2

aG
aS3= o. (9c)

TABLE 2. Vertices of composition-ordering space
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'h

FeMgMgMg
MgMgMgMg

FeFeFeMg FeFeFeFe

FeFeFeFe

FeFeFeFe
MgFeFeFe

Note: MMMM ~ M ~'M ~'M ~'MM3Si.O,,(OH),.

The remaining three preferred parameters are defined to
correspond to the Gibbs energies of ordering reactions.
The stoichiometries of these reactions may be deduced
from the conditions of homogeneous (or internal) equi-
librium with respect to cation ordering:

For example, upon substitution of Equations 3, 4, and 5,
Equation 9a becomes

-G* = RTln
[(

X~~
)
'%
(
X~2

)
X

(
X~3

)
%

(
X~4

)X]s,
X~' X~i X~~ X~:

+ G~s,r + 2G~.s,s, + G~.S2S2 + G~,S3S3' (10)

The Taylor coefficient on the left side of this expression

is the Gibbs energy of a reaction (LlGg,RD.')that coincides
with cation redistribution corresponding to the transfer
ofFe2+ from Ml to the M2, M3, and M4 sites. In terms
of the vertices of composition-ordering space, such a re-
action is given by the entry for LlGg,RD"provided in Table
3. Equivalent analysis of Equations 9b and 9c provides
definitions for the remaining two preferred model param-
eters, LlGg,RD.2and LlGg,RD,3(Table 3).

Relations between the Taylor expansion coefficients of
Equation 5 and the preferred set of model parameters
may be obtained by writing out definitions of each of the
parameters (e.g., Eqs. 7 and 8) in terms of the Taylor
expansion coefficients. The 15 Taylor expansion coeffi-
cients may then be uniquely expressed in terms of the 15
preferred model parameters by solving the set of 15 linear
expressions given by these definitions. The result is pre-
sented in Table 4. Substitution of these identities into
Equation 5 provides our model equation for the molar
vibrational Gibbs free energy of ferromagnesian amphi-
boles. Considerable simplification and insight can be
achieved by utilizing definitions from Table 1 and writing
this quantity in terms of site mole fractions:

Parameter

TABLE 3. Reciprocal exchange and reciprocal ordering exchange reactions

Reaction (M4).(M1 ).(M2).(M3)Si.022(OH).

Mg,Mg,Mg,Mg + Fe,Fe,Fe,Fe = Fe,Mg,Fe,Fe + Mg,Fe,Mg,Mg
Mg,Mg,Mg,Mg + Fe,Fe,Fe,Fe = Fe,Fe,Mg,Fe + Mg,Mg,Fe,Mg
Mg,Mg,Mg,Mg + Fe,Fe,Fe,Fe = Fe,Fe,Fe,Mg + Mg,Mg,Mg,Fe
Mg,Mg,Mg,Mg + Fe,Fe,Fe,Fe = Mg,Fe,Fe,Fe + Fe,Mg,Mg,Mg
Mg,Mg,Mg,Mg + Fe,Fe,Fe,Fe = Mg,Fe,Fe,Mg + Fe,Mg,Mg,Fe
Mg,Mg,Mg,Mg + Fe,Fe,Fe,Fe = Mg,Fe,Mg,Fe + Fe,Mg,Fe,Mg
Mg,Mg,Mg,Mg + Fe,Fe,Fe,Fe = Fe,Fe,Mg,Mg + Mg,Mg,Fe,Fe
Y,Fe,Fe,Fe,Mg + Y,Fe,Fe,Mg,Fe + Y,Mg,Fe,Fe,Fe + %Mg,Fe,Mg,Mg + 'I..Mg,Mg,Mg,Mg

=
Y,Mg,Mg,Mg,Fe + '/,Mg,Mg,Fe,Mg + Y,Fe,Mg,Mg,Mg + %Fe,Mg,Fe,Fe + 'I..Fe,Fe,Fe,Fe

Y,Fe,Fe,Fe,Mg + '/,Fe,Mg,Fe,Fe + Y,Mg,Fe,Fe,Fe + %Mg,Mg,Fe,Mg + 'I..Mg,Mg,Mg,Mg =
Y,Mg,Mg,Mg,Fe + '/,Mg,Fe,Mg,Mg + Y,Fe,Mg,Mg,Mg + %Fe,Fe,Mg,Fe + 'I..Fe,Fe,Fe,Fe

Y,Fe,Mg,Fe,Fe+ Y,Fe,Fe,Mg,Fe+ Y,Mg,Fe,Fe,Fe+ %Mg,Mg,Mg,Fe+ %.Fe,Fe,Fe,Fe=
Y,Mg,Fe,Mg,Mg + Y,Mg,Mg,Fe,Mg + Y,Fe,Mg,Mg,Mg + %Fe,Fe,Fe,Mg + %.Mg,Mg,Mg,Mg

Terms applicable to three-site formulation
';.Fe,Fe,Mg,Fe + ';.Mg,Fe,Fe,Fe+ ';.Mg,Fe,Mg,Fe+ %.Mg,Mg,Mg,Mg ~

';.Fe,Mg,Fe,Mg + '4Mg,Mg,Fe,Mg + ';.Fe,Mg,Mg,Mg + %.Fe,Fe,Fe,Fe

Terms applicable to two-site formulation

'l.Mg,Fe,Fe,Fe + 3/,.Mg,Mg,Mg,Mg
=

'l.Fe,Mg,Mg,Mg +3/,.Fe,Fe,Fe,Fe
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TABLE4. Taylor expansion coefficients

10W, - 4W2 - 2W3 - 4W. 5f.G~234' - 2f.G~'23' - 2f.G~1243 - 2f.G~'342+
., , , , . . .

7 14

10W2 - 4W, - 2W3 - 4W. 5f.G~'342 - 2f.G~'23' - 2f.G~'2" - 2f.G~234'
+

., . , . . , .
7 14

6W3 - 2W, - 2W2 - 2W. 6f.G~'2'3 - f.G~'23' - f.G~'342 - f.G~234'
+

., . , . , . .
7 14

50W, + 8W2 + 4W3 + 8W. 12f.G~234' - 2f.G~'23' - 2f.G~'2'3 - 2f.G~'342
- 49

+. . . .
49

.. . .

40W, + 40W2- 8W3 - 16W. f.G~3412 8f.G~'23' + 8f.G~'2'3 + 29f.G~'342+ 29f.G~234'
+~- .. .. .. ,.

~ 2 ~

20W, + 24W3 - 8W2 - 8W. f.G~'324 4f.G~123' + 25f.G~'2'3 + 4f.G~'342 + 39f.G~234'
49 +~-'

. . .
98

., . .

8W, + 50W2+ 4W3+ 8W. 12f.G~I342- 2f.G~'23' - 2f.G~'2'3 - 2f.Gh34'
- + .. . , . . . .

49 49

20W2 + 24W3- 8W, - 8W. f.G~'32' + f.G~34'2 45f.G~'23' + 24f.G~12'3+ 10f.G~'342+ 45f.G~2341
- "

,.
+

.. , . , , , ,

49 2 98

2W, + 2W2 + 36W3 + 2W. 13f.G~12'3 - f.G~I23' - f.G~'342 - f.G~234'- 49
+. . .

'98
.. . .

G;

13;"
2W, + 2W2 + W3 + 2W.

4

~GgRD.1

f.GgRD~

f.GgRD.3

f.G~.123.4 + f.G~.12..3 + f.G~,'34.2 + f.G~.234.1

8

G:I.8,

G* = (7';~~ + 2h~~ + Y,X~i + 7';X~DG~m

+ (2hX~' + 2hX~2 + Y,X~3 + 7';X~4)Gg,n

+ (X~4 - X~')l1G~RD.' + (X~4 - ~2)l1G~RD.2

+ (X~4 - ~3)l1G~RD.3

+ (2W, + ~l1G 1.234.')XWX~~

+ (2W2 + ~l1G1.13dX~2 X~~

+ (W3 + ~l1G1.12dX~3X~i

+ (2W4 + ~l1G1.123.4)X~4X~:

+ ~(X~4 - ~3)(X~2 - XW)l1G 1.13.24

+ ~(X~4 - X~2)(~3 - X~1)l1G1.12.34

+ ~(XW - ~2)(X~' - X~3)l1G 1.234.1

+ ~(X~2 - X~')(X~2 - ~4)l1G1.'34.2

+ ~(X~3 - X~')(X~3 - X~4)l1G 1.'24.3

+ ~(X~4 - X~2)(X~4 - ~3)l1G 1.123.4' (11)

The first two terms in Equation 11 represent macroscopic
mechanical mixing contributions to G; the two quantities
in parentheses are the bulk mole fractions of Mg and Fe,

respectively (Table 1). The next three terms quantify the
energetic drive for cation ordering. Values of the param-
eters l1G~RD." l1G~RD,2'and l1G~RD.3'should be negative
so that the Gibbs energy of the system will be lowered by
preferential occupation of FeH on the M4 site (these pa-
rameters premultiply the quantities X~L X~J. The more
negative the value, the greater the partitioning. The four
terms involving the intrasite regular-solution parameters

(W" W2, W3, and W4) describe the energetic conse-
quences of size-mismatch of unlike cations. The quanti-
ties in parentheses multiplying each site mole fraction
product should be positive, since size-mismatch effects
tend to destabilize the solution (Lawson, 1947). Note that
the appropriate FeH-Mg reciprocal exchange energy en-
ters into these sums and that the site W is multiplied by
the stoichiometric number of sites in the formula unit;
the Wi is defined on a per cation basis. The remaining six
terms in Equation II account for the noncoplanarity of
the Gibbs energies of vertices of composition-ordering
space. They may be thought of as nonmacroscopic con-
tributions to the Gibbs energy ofmechanica1 mixing. Note
that the premultiplying mole-fraction terms may be writ-
ten equivalently using the mole fractions of Mg on the
respective sites.

Equations 3, 4, and 11 may be combined and inserted
into Equation 9 to provide expressions for the condition
of homogeneous equilibrium. We obtain the following:
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_
2

[(
x~~)

5

(x~:?)
2

(X~:?
)(

X~4)
2

]
- 0o - Y,RT In

~l ~~ ~~ X~:
+ L!.GORD,I

+ X(2W, + ~L!.G1,234,1)(X~1- X~D

- ~(2W2 + ~L!.G1,134,2)(X~.?- X~D

- 2!,(W3 + ~L!.G1,124,3)(X~:?- X~D

- ~(2W4 + ~L!.G1,123,4)(X~4 - X~:)

+ ~(X~3 - X~I + X~2 - X~I)L!.G1,234,1

+ ~(X~4 - X~3)(L!.G1,13,24 - L!.G1,124,3)

+ ~(X~4 - X~2)(L!.G1,12,34 - L!.G1,134,2) (l2a)

o = ~RTln[(~~J(~:~),(~~;)(~~J] + L!.G~RD,2

- ~(2W, + ~L!.G1,234,1)(X~1- X~D

+ X(2W2 + ~L!.G1,134,2)(X~2- X~D

- 2!,(W3+ ~L!.G1,124,3)(X~3- X~D

- ~(2W4 + ~L!.Gh23,4)(X~4 - X~:)

~(X~4 - X~3)(L!.G1,13,24 - L!.G1,123,4)

+ ~(X~3 - ~1)(L!.G1,12,34 - L!.G1,234,1)

+ ~(X~4 - X~2 + X~l - X~2)L!.G1,134,2 (12b)

_
2

[(
~I

)(
X~2

)(
~ )

3

(X~4
)]

L!.-O0- Y,RTln
X~~ ~~ X~3 X~: + GORD,3

Y;(2W, + ~L!.G1,234,1)(X~1- X~D

Y;(2W2+ ~L!.G1,134,2)(X~2- X~D

+ %(W3 + ~L!.Gh2d(X~3 - ~D

Y;(2W4 + ~L!.Gh23,4)(X~4 - X~)

+ ~(X~2 - XW)(L!.G1,13,24- L!.G1,234,1)

~(X~4 - X~2)(L!.G1,12,34 - L!.G1,123,4)

+ ~(X~4 - X~3 + X~I - X~3)L!.G1,124,3' (12c)

Equations l2a-12c are sufficient to define uniquely the
equilibrium ordering state for a given composition, tem-
perature, and pressure (i.e., 51, 52' and 53 as functions of
r, T, and P).

The chemical potentials of end-member cummington-
ite and grunerite are given according to the extended form
of Darken's relation (Ghiorso, 1990b):

and
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The Fe2+-Mg exchange potential, fJ.Gn
lently aG/ar, is given by

aG - -a;= ~(Gg,n - Ggm)

fJ.Cm, or equiva-

+ y,;RTIn
[(

X~,
)
2

(
~2

)
2

(
X~3

)(
X~4

)
2

]2
X~~ ~~ X~~ X~:

- ~(2W, + ~L!.G1,234,1)(X~1- X~D

~(2W2 + ~L!.G1,134,2)(X~L X~D

~(W3 + ~L!.G1,124,3)(~3 - X~~)

~(2W4 + ~L!.G1,123,4)(X~4- X~). (14)

Substitution of Equations 3, 4, 11, 12, and 14 into Equa-
tion 13 provides model expressions for the end-member
potentials:

fJ.Cm= Ggm + RT(2ln X~~ + 2 In X~~

+ ln~~ + 2lnX~:>

+ (2W, + ~L!.Gh34,I)X~IX~1

+ (2W2 + ~L!.G1,13d~.?X~2

+ (W3 + ~L!.Gh2dX~3X~3

+ (2W4 + ~L!.G1,123,4)X~4X~4

~(X~4 - X~3)(~2 - X~')L!.G1,13,24

~(X~4 - ~2)(X~3 - X~I)L!.G1.12.34

~(X~I - X~2)(~1 - ~3)L!.G1,234,1

~(X~2 - X~1)(~2 - X~4)L!.G1,134,2

~(X~3 - X~I)(~3 - X~4)L!.G1,124,3

~(X~4 - X~2)(~4 - XW)L!.G1,123,4 (l5a)

fJ.Gn= Gg,n + RT(2 In ~I + 2 In X~2

+ In ~3 + 2 In X~4)

+ (2W1 + ~L!.Gb4)X~~X~~

+ (2W2 + ~L!.G1,134,2)X~~~~

+ (W3 + ~L!.G1,12d~~X~~

+ (2W4 + ~L!.G1,123,4)X~:X~:

~(X~4 - XW)(X~2 - X~I)L!.G 1,13,24

~(X~4 - X~2)(X~3 - X~I)L!.G1,12,34

~(X~I - X~2)(~1 - X~3)L!.G1,234,1

~(X~.? - X~I)(X~2 - X~4)L!.G1,134,2

~(X~3 - X~I)(X~3 - X~4)L!.G1,124,3

~(~4 - X~2)(X~4 - X~3)L!.G1,123,4' (15b)
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TABLE5. Three-site approximation and model equations

Ref. no.Expression

G = (~X~~3 + 'hX~~ + 'hX~)Ggm + (~X~." + 'hX~.' + 'hX~")G8.,

+ RT(3X~."'ln X~." + 3X~31n X~~3 + 2X~.'ln X~.' + 2X~~ln X~~ + 2X~"ln X~' + 2X~~ln X~~)

+ (X~' - X~"XAG&RD"+ AG&RD.3)+ (X~" - X~.')AG&RD.,+ (3W'3 + y:'AG~.".24)X~:3X~~3+ (2W, + y:'AG~,'34.,)X~.'X~~

+ (2W. + Y:.AG~,'23,.)X~"X~~+ y:.(X~' - X~."XX~.' - X~.")AG~,".24 + y:.(X~.' - X~"XX~.' - X~")AG~,'34.2

+ y:.(X~" - X~.'XX~" - X~")AG~,'23,'

oG
[(

XM'3
)
3

(XM')'(
XM.

)
2
]- = '/,(Go - GO) + '/,RTln -.-!!... 2!. 2!. - '/,(3W + '/,AGo )(XM" - XM") - '/,(2W + '/,AGo ,xXM2- XM2)

Br
2 Go em 2

X~~3 X~~ X~~
2 13 2 X,13.24 Fe Mg 2 2 2 X,1M, Fe Mg

- 'h(2W. + y:'AG~.'23..)(X~" - X~~ + y:.(X~" - X~' + X~." - X~.')AG~.'34.2- y:'(Xr.' - X~:3XAG~.'3.24- AG~.123.')

J1.Cm= G~ + RT(3In X~~3+ 2 In X~~ + 2 In X~) + (3W" + Y:.G~.".24)X~:3X~."+ (2W, + y:'AG~.'34,,)X~.'X~

+ (2W. + y:'AG~,123.')X~'X~' - y:.(X~" - X~"XX~.' - X~")AG~.'3.24 - y:.(X~.' - X~.")(X~.' - X~')AG~.'34.2

- y:.(X~" - X~)(X~" - X~.")AG~,'23..

J1.o,= G8., + RT(3 In X~." + 2 In X~.' + 2 In X~') + (3W" + Y:.G~.".24)X~~3X~~3 + (2W, + y:'AG~.'34.,)X~~X~

+ (2W. + y:'AG~,'23,')X~~X~~ - y:.(X~' - X~:3)(X~.' - X~:3)AG~,".24 - y:.(X~.' - X~:3)(X~2 - Xr.')AG~.'34.2

- y:.(X~' - X~.')(X~" - X~")AG~."3..

T5-1

T5-2

T5-3a

T5-3b

T5-4a

T5-4b

Reduction to a three- or two-site formulation

The model equations developed above may be simpli-
fied in the case where experimental data or required ac-
curacy in application do not warrant the full four-site
expansion. Expressions may be readily developed under
the assumption of random mixing (absence of Fe2+-Mg
ordering) over the M I and M3 sites (the three-site model)
or the assumption of random mixing over the M I, M2,
and M3 sites (the two-site model). For the former it is
convenient to define the pseudo intrasite regular-solution

parameter, W13, corresponding to the Mg7Sis022(OH)2-
Mg~4Fe~IMg~2FeM3Sis022(OH)2 join. By utilizing Equa-
tion II to evaluate directly the Gibbs energy at the mid-
point of this join, it can be demonstrated that W13 is
related to WI and W3 by the following:

3W13 + ~~G1.13,24

= (2WI + ~~G1.234,1) + (W3 + ~~G1,12d. (16)

Similarly for the two-site model, we define the parameter

TABLE6. Two-site approximation

Ref. no.Expression

G = (%X~~23+ 'hX::~Ggm + (%~:'3 + 'hXr.')G&, + RT(5X~."'�n X~:23 + 5X~23ln X~23 + 2X~"ln X~.. + 2X~n X~~)

+ (X~4 - ~e123XAG&RD.'+ AG&RD.2+ AG&RD,3)+ (5W'23 + y:'AG~.'23..)X~:23X~23

+ (2W. + 'I,AG~,'23")X~"X~ + y:.(X~" - X~'23)2AG~,'23,'

a; ~ Y:.(G&,- Ggm)+ Y:.RTln[(;~::n;;;)'] - y:'(5W", + y:'AG~.123..XX~:23- ~~23) - y:'(2W. + y:'AG~,,,,,.XX~" - X~~)

::'3
= AG&RD,'+ AG&RD,2+ AG&RD.3+ '%In [(;:~::)(;;;)] + 'h(5W"3 + Y:.AG~123..XX~'23 - X~~23)

- %(2W. + y:'AG~.123..)(X~"- X~) + (X~" - X~'23)AG~,'23..

J1.cm= G~ + RT(5In X~~23+ 2 In X~) + (5W'23+ y:'AG~,'23,.)X~:23X~'23+ (2W. + y:'AG~,'23..)X~'X~"- y:'(Xr.'- X~:23)2AG~."3,'

J1..,= G&, + RT(5In X~.'" + 2 In X~..) + (5W'23 + y:'AG~.123..)X~23X::~23+ (2W. + y:'AG~.'23")X~:X~ - y:'(Xr.' - X~:23)'AG~.'23,'

T6-1

T6-2

T6-3

T6-4a

T6-4b
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W'23' corresponding to the join Mg7Sis022(OH)2-Mg~4-
Fe~'Fe~2FeM3Sis022(OH)2' Evaluating Equation 11 pro-
vides the identity

5W123 + ~~G~.123.4= (2W, + ~~G~.234,,)

+ (2W2 + ~~G~,,,d
+ (W3 + ~~G~.'24,3)' (17)

It follows that WI23 and W" are related:

5W123 + ~~G~,'23,4

= (3W" + ~~G~,,,,24) + (2W2 + ~~G~,,,d. (18)

A model expression for G in the three-site approxi-
mation may be obtained from Equations 3, 4, and 11 by
substituting Equation 16 and the identities

(19a)

and

X~~3 = X~~ = X~~. (19b)

The resulting expression for G is provided in Table 5 (Eq.
T5-1). The remaining entries in the table are obtained in
a similar manner. Notice that in the three-site approxi-
mation, s, is equal to S3,

aG aG aG
-=-+-
as" as, aS3

and consequently

~G2,RD,,, = ~G2,RD" + ~G2,RD,3' (21)

Thus, the number of (preferred) parameters has been re-
duced from 15 to 10. Model expressions in the two-site
approximation are provided in Table 6 and result from
Equation 17 and the identities

(22a)

(22b)~~23 = X~~ = X~~ = X~~

and

~G2,RD,'23= ~G2,RD" + ~G2,RD,2+ ~G2,RD,3' (24)

This further reduces the number of (preferred) parame-
ters to six.

CALIBRATION

Calibration of our model requires three sorts of data:
(1) constraints on the standard-state properties, including
heat capacities and volumes as a function of T and P, as
well as reference-state entropies and enthalpies, (2) con-
straints on FeH-MgH cation ordering as a function of
temperature, pressure, and bulk composition, and (3)
constraints on the conditions of heterogeneous equilib-
rium between coexisting ferromagnesian amphibole and
other thermodynamically well-characterized phases (e.g.,
orthopyroxene, olivine, and spinel). The first of these da-

--
..--
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TABLE7. Internally consistent thermodynamic properties of end-
member solids

Anthophyllite Cummingtonite Grunerite
Mg,Si.022(OH), Mg,Si.O,,(OH), Fe,Si.022(OH),

t.Hf (kJ)
~.(J/K)
V. (J/bar)
k.
k, x 10-'
k, X 10--
k3 X 10-'
v, x 10"
v, x 10"
v3 x 10"
v. x 10'.

-12073.132 -12067.517
535.259 540.259

26.33
1233.8
- 71.3398

-221.638
233.394
-1.1394

-9623.300
725

27.84
1347.83
-93.5691

-202.285
303.919
-1.6703

8.68919
28.40028.105

62.894

Note: ~~ = k. + (k,/VTJ + (k,/P) + (k3/P) (J/K). vIVo = 1 + v,(P
- P,) + v,(P - P,)' + v3(T - T,) + v.(T - T,)' (J/bar). t.Hf and ~ of
anthophyllite and cummingtonite are given with greater precision than
individually known in order to maintain internal consistency.

tasets allows estimation of the temperature and pressure
dependence of the end-member quantities G~m and Gg,n'
The second and third datasets constrain the remaining
solution parameters. We discuss the available data and
methods of calibration below.

(20)

Standard-state data

Standard-state properties of grunerite (Table 7) are ref-
erenced to those of fayalite, ferrosilite, quartz, and H20
after Berman (1988). Molar volume is taken from the
extrapolation by Hirschmann et aI. (1994) of natural
cummingtonite cell volumes corrected for Ca and Mn.
Expansivity is from Holland and Powell (1990). Com-
pressibility was fit as a binomial to the data of Zhang et
aI. (1992). Enthalpy of formation was adjusted so as to
fit the half-brackets at high P and T on the breakdown
reactions of grunerite

Fe7Sis022(OH)2 = 7FeSi03 + SiOl + H20 (25)
grunerite ferrosilite quartz water

and
(23)

(26)
grunerite fayalite waterquartz

by Lattard and Evans (1992). At the same time, the en-
tropy of grunerite was adjusted downwards to 725 J/K
from 734 :t 7 J/K (Holland, 1989) and 730 J/K (calcu-
lated by Lattard and Evans, 1992, after Anovitz et aI.,
1988) in order to optimize the fit to the experimental
data.

Standard-state properties of magnesio-cummingtonite
(Table 7) are based with minor modification on those of
anthophyllite (R. G. Berman, 1990 personal communi-
cation), which are consistent with other MgO-SiOl-H10
minerals in the Berman (1988) database. Compositional
data from the literature on natural olivine-anthophyllite
and olivine-cummingtonite pairs are consistent with in-
dependent literature data on anthophyllite-cummington-
ite pairs (extrapolated AI-free) in indicating, in the com-
positional range of metamorphic ultramafic rocks (XFain
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Fig. I. Roozeboom plots of X~4 and X~2 vs. X~I in cum-
mingtonite. Projected from X-ray refinements of reequilibrated
natural cummingtonite (Hirschmann et aI., 1994): 750°C, gray
circles; 700 OC, black circles; 600 OC, open circles. Isotherms

computed in this study (X~I = X~3).

olivine 5-20%), a value for /)'GO for the exchange equi-
librium

magnesio-aothophyllite gruoerite

ferro-anthophyllite magnesio~cummingtonite

to be 1.1kJ/cation at 650°C with an estimated uncertain-
ty (20) of 0.5 kJ/cation. Since Mg-FeH cation order at
high temperature in Mg-rich anthophyllite and cum-
mingtonite is apparently indistinguishable (Hirschmann
et aI., 1994), we assume cancellation of nonideal prop-
erties in the equilibrium

Mg7SisOdOH)2 = Mg7Sis02lOH)2 (28)
magnesia-anthophyllite magnesio-cummingtonite

and derive from the Mg-Fe partitioning data a (rounded-
off) /),Go for the dimorphic transition at 650°C of 1.0 kJI
mol.

The entropy of magnesio-cummingtonite has not been
determined by calorimetry. We concur with the belief
that cummingtonite is the high-temperature form (Ross
et aI., 1969; Prewitt et aI., 1970; Ghose, 1981; Carpenter,
1982) and accordingly adopt a provisional SO (1 bar, 298
K) of magnesio-cummingtonite that is 5 11K larger than
SO anthophyllite, an amount that is consistent with their
virtually indistinguishable molar volumes (Hirschmann
et aI., 1994) and with data for analogous pyroxenes. A

reaction entropy any larger than 5 11K would stabilize
magnesio-cummingtonite below 850 °e, and, so far, syn-
theses of magnesium amphibole in the system MgO-Si02-
H20 (up to 815°C) have always been reported as ortho-
rhombic (Greenwood, 1963; Chernosky et aI., 1985). The
298 K entropy of anthophyllite (incorporating phase-
equilibrium constraints) is 535.3 11K (Table 7), which is
slightly larger than the calorimetric value of 534.5 11K
but well within its ::!:3.5 11K uncertainty (Hemingway,
1991 ).

The high-temperature heat capacity, expansivity, and
compressibility ofmagnesio-anthophyllite and magnesio-
cummingtonite are assumed to be identical. Given the
above estimates of reaction entropy at 298 K and reac-
tion free energy at 650°C, we therefore arrive at a tem-
perature-independent enthalpy for Reaction 28 of 5615
Ilmoi.

Cation ordering constraints

In Figure 1 we plot data from Hirschmann et ai. (1994)
on the distribution ofFeH between M4 and Ml, and Ml
and M2 sites in ferromagnesian c1inoamphiboles. The data
were obtained by single-crystal X-ray structure refine-
ments of naturally occurring cummingtonite heat-treated
and quenched from the indicated temperatures. These
data are consistent with, but supersede in quality and
precision, the data of previous studies of cummingtonite
cation ordering (e.g., Bancroft et aI., 1967; Hafner and
Ghose, 1971; Ghose and Weidner, 1972; Barabanov and
Tomilov, 1973) obtained for the most part using Moss-
bauer methods, which do not distinguish the M 1, M2,
and M3 sites. FeH is strongly partitioned between M4
and Ml(M3) and between M4 and M2. It is weakly par-
titioned between M2 and Ml(M3). FeH and Mg are ran-
domly distributed (within experimental uncertainty) be-
tween Ml and M3 (Hirschmann et aI., 1994). The data
plotted in Figure 1 provide a basis for calibrating model
parameters appropriate for the three-site formulation
(Table 5).

In order to proceed, we must first recognize that data
on cation ordering, no matter how precise, cannot con-
strain uniquely all eight mixing parameters of the three-
site model (i.e., all of W2, WI3, W., /),~.123," /),G1.134,2,
/),G1,IJ,24, I5G2>RD,2,and /),G2>RD,13)'The easiest way to see

this is to differentiate an expression for the molar Gibbs
free energy of solution in the three-site approximation
(reducing Eqs. 3, 4, and 5 from the four-site to the three-
site formulation),

+ G~,S2S~ (29)

with respect to SIJ and S2, in order to obtain conditions
for homogeneous equilibrium as a function of the Taylor
expansion coefficients of G*:
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TABLE8. Values and correlation of Taylor expansion coefficients from cation-ordering fits

G~3 ~~G:.S,3 ~.. ~:J,S,3 G:.3'~ G;'...

Value (kJ) -9.608 -16.248 -3.776 3.405 -8.784 8.579 -3.046
Std. err. 0.803 0.998 0.985 0.943 5.067 7.977 3.008

~~3 1
G* -0.605 1-..
Q~S,3 -0.661 0.798 1
Q~s, 0.671 -0.859 -0.907 1
Q~3.S,3 -0.405 0.538 0.849 -0.799 1
Q~3'S, 0.251 -0.463 -0.780 0.730 -0.987 1
G;'... -0.0986 0.215 0.628 -0.552 0.928 -0.965

dG
= 0 =

_TdSconf
+ G* + G* r

dS2 dS2
s, r.s,

+ G~3,S2S13+ 2G:'.s,S2' (30b)

These conditions, which define the cation-ordering con-
straints depicted in Figure 1, involve seven Taylor expan-
sion coefficients and consequently afford the possibility of
calibrating only seven of the preferred model parameters.
As demonstrated in Table 4, linear combinations of the
preferred model parameters may be rearranged to pro-
vide definitions for the Taylor expansion coefficients. In-
verting this system of equations we obtain the following:

G~m= G~ - G~ + G~r

G~n = G~ + G~ + G~r

~G2>RD,13 = G~3

(31 a)

(31 b)

(31c)

(31 d)

W2 = -%9G~s, + %G~s, - }iG:"s, (31f)

W4 = -%9 G~r - 2h(G~S13+ G~s,)

- }i(G~3,S13+ G~3'S' + G:"s,) (31g)

~G~,123,4 = _8%9G~r - %(G~S13+ G~s,)

(31 h)

(3li)

(31j)

~G~,13,24 = _9%9G~r + 2hG~s13 + 2G~3'S13

~G~.134,2 = _8%9 G~r + %G~s, + 2G:"s,.

Note that the Taylor expansion coefficents G~, G~, and
G~rdo not appear in the expressions (Eq. 30) of homo-
geneous equilibrium. G~ and G~ must be calibrated from
independent data on standard-state properties (Eqs. 31a
and 31b). The coefficient G~rmust be obtained from oth-
er data such as phase equilibrium constraints, as it rep-

resents an effective macroscopic regular-solution param-
eter (W):

(1 - X)G~m + XG~n + (1 - X)XW

=
C ; r)G~m+

C ; r)G~n +
C ~

r2)w

= G~ + G~r + G~rT2. (32)

Hence, G~r = -4W. The analysis of the cation-ordering
constraints consequently proceeds logically through a cal-
ibration of the seven Taylor coefficients of Equation 30.
Then, subsequent calibration of G ~rand adoption of stan-
dard-state properties yields, through Equation 31, all ten
preferred model parameters.

The coefficients in Equation 30 may be calibrated by
nonlinear regression analysis of the data plotted in Figure
1. For each datum we construct a residual function cor-
responding to predicted (via Eq. 30) minus measured val-
ues of the mole fraction of Fe on each site and minimize
the sum of the squares of these residuals,

n
SS = ~ [(XMI3 - XM13 )2 + (XM2 - XM2 )2

~ Fe,l Fe,l Fe,J Fe,l

i=1

+ (X~~i - X~~Y] (33)

by nonlinear optimization (Marquardt's method, Nash,
1990). Optimal values, standard errors on these values,
and correlations induced by the dataset are summarized
in Table 8.

In Figure 1 we plot predicted isotherms calculated from
the coefficients of Table 8. The somewhat pronounced
temperature dependence of the ordering isotherms may
seem at first mysterious in light of the fact that the fitted
Taylor coefficients are temperature independent. This
temperature dependence arises from the entropy term in
Equation 30. In Figure 2 we graph the calculated entropy
of mixing. These curves are completely determined by
our fit ofthe cation-ordering data; the calculations do not
depend on any adopted value of G

~r'
The 0 K and 00 K

curves, i.e., the lowermost curve depicting entropy vari-
ation in the fully ordered state and the uppermost curve
denoting the mixing entropy in the randomly ordered
state, are model independent. Our model-dependent
curves must interpolate between these two reference states,
hence the pronounced increase in M2-M13 ordering at
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-30
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Fig. 2. Entropy of mixing and excess entropy of Fe-Mg cum-
mingtonite computed from XRD ordering data and the three-
site solution model proposed here. Note that the entropy of mix-
ing is a strong asymmetric function of both composition and
temperature. This renders modeling of the excess entropy utiliz-
ing a Margules approach highly problematic. The limiting curve
for low temperature is calculated on the assumption that the Ml
and M3 sites remain equivalent down to absolute zero.

0.3

low temperatures is demanded by the theoretical value
of the third law entropy and is not an arbitrary extrapo-
lation from the high-temperature measurements.

In Figure 3 we plot RTln Ko[Ko = (X~eX~J/(X{,eXLJ]
corresponding to the simple Fe-Mg exchange reaction be-
tween the various crystallographic sites. These plots il-
lustrate with high sensitivity the dependence of readily
measured quantities on temperature and composition, and
therefore serve as a guide to the collection of quality cat-
ion-ordering data, whether by X-ray (e.g., Hirschmann et
aI., 1994; Yang and Ghose, 1994), Mossbauer, or other
techniques. Note that even at 800°C values of Ko be-
tween sites are not independent of composition. Further-
more, the convergence of Ko values at the extremes of
composition required by our model is something that goes
undetected by the measurements, since uncertainties in
site population ratios tend to infinity as XFe or XMgap-
proach zero.

-
~-
c

~
c:
t-o:

-15
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o
IM4 ~M131
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Fig. 3. Variation in intracrystalline partition coefficient as a
function of macroscopic XFeof cummingtonite.

Phase equilibrium constraints

In order to complete the calibration of our model, we
need to examine phase equilibrium constraints involving
cummingtonite and at least one other ferromagnesian
phase. Fortunately, the wealth of experimental data ob-
tained by Fonarev and coworkers (Fonarev et aI., 1976,
1979; Fonarev and Korolkov, 1980; Fonarev, 1987) af-
fords an excellent basis for completing the calibration and
testing the consequences of the derived model.

Fonarev and Korolkov (1980) provide half-brackets on
the two-phase loop between Fe2+-Mg orthopyroxene and
cummingtonite solid solutions. We plot their data in Fig-
ure 4. These reversals may be used to estimate G~, pro-
vided we accept the standard-state values and ordering
calibration discussed above and adopt an internally con-
sistent model for the mixing properties of Fe-Mg ortho-
pyroxenes. Sack and Ghiorso's (1989) solution model
meets this criterion, in that it is consistent with the stan-
dard-state database of Berman (1988). We estimate an
optimal value of G~, by calculating two-phase loops
(drawn as the solid curves in Figure 4) and comparing
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Fig. 4. Half-brackets on the compositions of cummingtonite
(solid triangles) and orthopyroxene (open triangles) in the assem-
blage cummingtonite + orthopyroxene + quartz + H20 from
experiments at 2940 and 4900 bars by Fonarev and Korolkov
(1980). Triangles point in the direction of change during the
experiment. Solid curves: cum + opx phase-loop (metastable at
low temperatures) fit to the experiments by adjustment of G~,
(see text). The shaded curve denotes a variation of :to.5 kJ in
G~... Dashed curves: calculated phase-loops for cum + 01 and
opx + 01, in part metastable (see Fig. 8). The two-phase loop
calculated at 2 kbar fits all the phase increase/decrease constraints
determined experimentally for the composition XFo = 0.5 by
Cameron (1975).

them visually to the reversals of Fonarev and Korolkov
(1980). Equilibrium solutions (T, X~~m,and Xj?,rx)are ob-
tained by solving simultaneously mass action expressions
corresponding to the following reactions:

Fe7Sig022(OH)2 = 7FeSi03 + Si02 + H20 (34)
Cum opx Qtz vapor

Cum opx

Cum opx

An optimal value of -11.2 k:J leads to the curves shown
in Figure 4. By application of Equations 31c-31j this leads
to values of the preferred model parameters reported in
Table 9. Standard-error estimates on these values are cal-
~ulated from the error estimates and correlation param-

TABLE9. Values of model parameters

Parameter Value (kJ)

n.d.
4.324
n.d.
3.560
4.592.
5.116.

12.103
n.d.

15.113
n.d.
n.d.
3.296
n.d.
n.d.
n.d.

-16.248
n.d.

-9.608.
-25.856.

5.905.
n.d.

Standard error
(kJ)

w,
W,
W,
W.
W13

W'23
AG~,123.4

.6.G~,124.3

AG~,134,2

A~~,234,'
LlG'k.12,34

AG~,13,24
AG~,23,14

AG~,14,23

A'G~RD 1

LlG~RD:'

SGgRD,3

AG~RD,13

AGgRD123

AG~OR~

LlG~DRD

n.d.
1.668
n.d.
0.425
1.458.
0.171.
1.486
n.d.
5.611
n.d.
n.d.

10.374
n.d.
n.d.
n.d.
0.998
n.d.
0.803.
0.820.
4.973.
n.d.

Note: n.d. ~ not determined.. Parameter specific to the three- or two-site model.

eters reported in Table 8 for the Taylor expansion coef-
ficients and an assumed standard error on G~, of zero.
Consequently, these error estimates reflect uncertainties
in fitting the cation-ordering data and not those of the
experimental brackets. Acceptable fits to the reversal
brackets shown in Figure 4 can be achieved for values of
G~, ranging from -11.4 to -11.0. This additional level
of uncertainty will propagate to the preferred values of
W. (Eq. 31g), .:lG~.123,.(Eq. 31h), .:lG~.13.2'(Eq. 3li), and

.:lG~.13..2(Eq. 31j).
Our calibration may be tested by comparing predicted

curves to reversal brackets on other cummingtonite-bear-
ing reactions investigated experimentally by Fonarev and
coworkers. In Figure 5 we plot data obtained by Fonarev
et a1. (1976) and Fonarev (1987) on the breakdown of
cummingtonite to magnetite + quartz + H20 at 4.9 kbars
and at fo, defined by the nickel + nickel oxide (NNO)
buffer. The plotted curve corresponds to simultaneous
solution of the equilibria

Fe7Sig02lOH)2 + %02 = }:;Fe30. + 8Si02 + H20 (36)
Cum Mag Qtz vapor

and

Cum Mag

(35) = 7Fe30. + Mg7Sig02lOH)2'
Mag Cum

(37)

The magnetite limb of the loop plots essentially at pure
Fe30.. We utilize standard-state data for magnetite,
quartz, O2, and H20 from Berman (1988) and the inter-
nally consistent thermodynamic model of Sack and



780

760

740

0 720
0

I-
700

680

660

640

0.1

5

4

-...
as

3+ .c
~-
D..

qtz
2

cum

+
1

H2O

514

n
__

GHIORSO ET AL.: THERMODYNAMICS OF AMPHIBOLES

0.3 0.90.5 0.7

Fig. 5. Comparison of model T-XFo equilibrium curve at 4900
bars (NNO buffer) for the redox assemblage cummingtonite +
magnetite + quartz + H20 with half-brackets determined in
experiments by Fonarev et a1. (1976), as revised by Fonarev
(1987). Omitted: experiments of '1:,-and I-d duration, and ex-
periments where XFo of cummingtonite changed by 1% or less.
The shaded curve denotes a variation of :i:0.5 kJ in G~,.

Ghiorso (1991 a) for the spinel. Agreement between the
calculated curve and the half-brackets is within the limits
of experimental error. In Figure 6 we examine the break-
down of cummingtonite to orthopyroxene in the presence
of magnetite + quartz (Fonarev, 1987). The f02 was con-
trolled by the NNO buffer, the compositions of cum-
mingtonite and orthopyroxene being free to adjust to the
imposed f02. The calculated curve is obtained by simul-
taneous solution of mass action expressions correspond-
ing to Reactions 34, 35, 36, and 37. As in Figure 5, the
calculated magnetite composition is essentially pure Fe304.
In addition to noting the excellent agreement between
measured brackets and the calculated curve, it should be
observed that our calibration predicts a maximum in
temperature for the stability field of cummingtonite on
the NNO buffer corresponding to about 4 kbar pressure.

Experimental data of Fonarev and Korolkov (1980)
provide constraints on the stability of cummingtonite with
respect to breakdown to Fe-Mg olivine and orthopyrox-
ene. In Figure 7 we plot reversal brackets on the uni-
variant four-phase assemblage cummingtonite + olivine
+ orthopyroxene + quartz and compare them to the cal-
culated curve obtained by solving simultaneously mass
action expressions consistent with Reactions 34, 35,

[>[>[>

I

cum + qtz + mag
I

[>

640 680 720

TeC)
760 800

Fig. 6. Comparison of model P-T equilibrium curve (NNO
buffer) for the assemblage cummingtonite + orthopyroxene +
quartz + magnetite + H20 with experimental half-brackets by
Fonarev (1987). Open triangles: decrease or loss of opx; solid
triangles: decrease or loss of cum.

Fe7Sig022(OH)2 = ~Fe2Si04 + %Si02 + H20
Cum 01 Qtz vapor

(38)

and

Cum 01

= Mg7Sig022(OH)2+ ~Fe2Si04. (39)
Cum 01

Standard-state data for olivines are from Berman (1988)
and the mixing properties of olivine are taken from Sack
and Ghiorso (1989). Above 3 kbar we predict a negative
dP/dT slope for the four-phase assemblage. A positive
dP/dT slope (Fonarev and Korolkov, 1980) is also pos-
sible for this assemblage, considering the experimental
data in Figures 4 and 7 alone.

In Figure 8, half-brackets on the cummingtonite-oliv-
ine loop (Fonarev et aI., 1979) are plotted at two pres-
sures, and calculated curves are obtained by simultaneous
solution of mass action expressions corresponding to Re-
actions 38 and 39. The agreements demonstrated in Fig-
ures 7 and 8 are good and support the olivine mixing
model proposed by Sack and Ghiorso (1989). This model
has recently been called into question by Wiser and Wood
(1991) and von Seckendortrand O'Neill (1993). On the
basis of high-temperature experimental work involving
Fe-Mg exchange between magnesiowUstite and olivine and
between orthopyroxene and olivine, respectively, these
authors deduce a much smaller degree of nonideality in
Fe-Mg olivine solid solutions than that proposed by Sack
and Ghiorso (1989), who based their analysis on phase
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T (OC)
Fig. 7. Comparison of model P- T equilibrium curve for the

assemblagecummingtonite + olivine + orthopyroxene + quartz
+ H20 with experimental half-brackets determined by Fonarev
and Korolkov (1980). Right-pointing triangles: loss of opx; left-
pointing triangles: loss of cum; squares: no change. Isopleths are
for percent grunerite in cummingtonite.

relations between orthopyroxene and olivine, direct de-
terminations of the activity of fayalite in olivine, and
enthalpy of solution data on olivine solid solutions. The
conclusions of Wiser and Wood (1991) and von Seck-
endorff and O'Neill (1993) are inconsistent with the ex-
perimental data displayed in Figures 7 and 8 when these
data are analyzed in conjunction with Berman (1988) and
the cummingtonite solution model presented here. A sig-
nificantly more ideal olivine shifts the calculated curve
in Figure 7 to the right, and for Wiser and Wood's (1991)
value, the curve is shifted to a maximum temperature of
780°C. Sack and Ghiorso's (1989) analysis of the likely
degree of nonideality in Fe-Mg olivine is further sup-
ported by the recent discovery of exsolution in ferromag-
nesian olivine (Petaev and Brearley, 1994) and by the
observation that the cummingtonite solution model pre-
sented here is not entirely dependent upon that of ortho-
pyroxene (and therefore circularly upon the olivine mod-
el of Sack and Ghiorso, 1989). Sack and Ghiorso (1991c)
calibrate macroscopic thermodynamic mixing models for
cummingtonite and olivine that are based solely on Fe-
Mg distribution between natural olivine + cummington-
ite pairs. Their analysis yields an olivine interaction pa-
rameter that is consistent with Sack and Ghiorso (1989)
and a degree of nonideality in cummingtonite nearly
identical to that proposed here. Additionally, the degree
of nonideality attributed to orthopyroxene by Sack and
Ghiorso (1989) has been verified recently by Yang and
Ghose (1994), who base their analysis on high-quality Fe-
Mg cation-ordering data in orthopyroxene, independent
)f olivine and cummingtonite. Finally, the cummington-

te model proposed here gives a consistent calibration of

--- -- -

740

720

- 700o
°-I- 680

660

640

740

720

- 700o
°-I- 680

660

640

Fig. 8. Comparison of model T-XF. equilibrium curves at
2940 and 4900 bars for the assemblage cummingtonite + olivine
+ quartz + H20 with experimental half-brackets by Fonarev et
al. (1979). Triangles point in the direction of change during the
experiment. Experiments with < 1% change in XF. omitted.

the phase reversals plotted in Figure 5, which depends
only upon the standard-state properties of magnetite,
quartz, O2, and H20 (Berman, 1988). All this corrobo-
rative evidence suggests that Sack and Ghiorso's (1989)
original conclusion with regard to the nonideality of the
thermodynamic mixing properties in Fe-Mg olivine, at
least in the range 600-800 °C, is strongly supported by
our analysis of phase equilibria involving cummington-
ite. However, it should be borne in mind that the mixing
properties of cummingtonite, olivine, and orthopyroxene
adopted in this paper represent one of a family of sets of
internally consistent models, and their mutual consisten-
cy in conjunction with the standard-state database ofBer-
man (1988) does not imply that they uniquely constrain
the thermodynamic properties of this system.

As a final test of our calibration, we have collected data
from the literature on compositions of coexisting olivine
+ cummingtonite and orthopyroxene + cummingtonite
solid solutions found in natural parageneses. These data
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Fig. 9. Model isotherms for intercrystalline partitioning of
Mg and Fe between cummingtonite and olivine and cumming-
tonite and orthopyroxene compared to data compiled from the
literature. XF, (x axis) is composition of olivine and orthopyrox-
ene, respectively. Open circles: ol-cum pairs, with probable equil-
ibration temperatures in the range 575-725 DC;diamonds indi-
cate Mn-rich samples. Solid circles: opx-cum pairs, with probable
equilibration temperatures in the range 625-780 "C.

0.7 0.9

are illustrated in Figure 9 in terms of a macroscopic KD
for Fe2+_Mg2+ exchange [e.g., Kg' = (X~~X~~m)/(X?e'm-
X~J] plotted against the Fe content of the olivine or or-
thopyroxene. Adopting the thermodynamic formulation
of Sack and Ghiorso (1989) for the olivines and ortho-
pyroxenes, we obtain the model calibration indicated in
the figure by evaluating mass action expressions corre-
sponding to Reactions 35 and 39. In light of uncertainties
inherent in projecting mineral compositions, the difficul-
ty of estimating equilibrium temperatures of natural as-
semblages, and the likely existence of exchange disequi-
librium in natural pairs, the agreement shown in Figure
9 is excellent. Note in particular the reversal in partition-
ing (at In KD = 0) between Fe- and Mg-rich bulk com-
positions, already seen as the extremum in Figure 4.

ApPLICATIONS

In a future contribution (Evans and Ghiorso, 1995), we
will present a number of applications that bear on cum-
mingtonite stability relations in metamorphic and silicic
volcanic rocks. We end this paper with three generic ap-
plications that focus on some thermodynamic conse-
quences of the model calibration. In Figure 10, the Gibbs
free energy of mixing, the excess Gibbs free energy, and
the enthalpy of mixing of Fe-Mg cummingtonite solid
solutions are plotted as functions of composition and
temperature. The Gibbs free energy of mixing is given by

Gmix = G - XFe Gan - (1 - XFe)Gcm (40)

(where G is provided by Eq. T5-1), the enthalpy of mix-
ing by

(41)

and the excess Gibbs free energy by

G ex = G mix - 7RT(XFeln XFe + XMglnXMg). (42)

The quantity subtracted from G mix on the right side of
Equation 42 is the macroscopic Gibbs free energy of mix-
ing of a seven-site ideal solution. The temperature de-
pendence of the curves shown in Figure 10 arises from
the configurational entropy term and reflects variation in
the degree of cation ordering as a function of temperature.
This is easily seen by writing out the molar Gibbs energy
of mixing in terms of its configurational (- TS conf)and
nonconfigurational components (G:ix; just G* minus the
standard-state terms):

(43)

Taking the temperature derivative of Equation 43 we ob-
tain the molar entropy of mixing, recognizing that G :ix
is modeled as temperature independent, i.e., in calibrat-
ing our model we assume that there is no vibrational
component to the entropy of mixing:

aGmix -s -s T
as conf

fiT = - mix= - conf-
aT'

(44)

Combining this result with Equation 43 yields an expres-
sion for the molar enthalpy of mixing:

Equations 43 and 45 clearly demonstrate that the tem-
perature d~endence of G mix and H mix is a consequence
of that in S conf. Note in Figure 10 how the Gibbs energy
of mixing becomes more symmetrical at elevated tempera-
ture as the degree of cation ordering diminishes. Addi-
tionally, note the pronounced minima in the calculated
low-temperaturecurves for Gex and Hmix' This is mainly
a consequence of the large ordering energy (IlG~RD,123=
IlG~RD,1 + IlG~RD,2 + IlG~RD,3' see Table 9), which sta-
bilizes Fe on the M4 site in strong preference to the Ml3
or M2. As the temperature decreases, the configurational
entropy tends to zero at the composition corresponding
to the ordered compound Fe~4 Mg~l Mg~2MgM3Sig 022
(OH)2 (i.e., XFe = ~, r = -30,X~4 = 1, X~13= 0, X~2 =
0), and this results in a molar Gibbs energy of mixing
given by

G mix IT-«J,r~-3/7 = IlG~RD,1 + IlG~RD,2 + IlG~RD,3

+ '!;,IlG?23.4

= IlG~RD.123 + '!;,IlG~,123,4 (46)

which may be derived from the three-site expression for
G in Table 5. As the temperature increases, less Fe orders
onto the M4 site, and the energetic contribution owing to
this stabilization is overwhelmed by the configurational
energy ofthe more random cation distribution. We predic1
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Fig. 10. Calculated Gibbs energy of mixing, excess Gibbs energy of mixing, and enthalpy of mixing of Fe-Mg cummingtonite.

that determinations of enthalpy of mixing in cumming-
tonite solid solutions should show both positive and neg-
ative deviations from ideality as a function of composition
(Fig. 10).

In Figure 11 we plot calculated activity-composition
relations as a function of composition and temperature.
The complex behavior of the isotherms is a consequence
of the temperature- and composition-dependent cation
ordering. Fonarev (1981, 1987) constructed activity-com-
position relations of cummingtonite using a macroscopic
formulation and a series of phase equilibrium experiments
(in the range 600-800 0C) involving olivine, orthopyrox-

ene, quartz, and magnetite. Above 750 "C, our results do
not differ greatly from his, but at progressively lower tem-
peratures the differences become large. This discrepancy
is due largely to the inability of Fonarev's (1981) model
to extrapolate correctly from the ordering states that char-
acterize his experimentally equilibrated cummingtonite to
the significantly different ordering conditions that develop
at lower temperatures. Fonarev's (1981) model proxies a
macroscopic ideal entropy of mixing combined with a
temperature-dependent excess entropy of mixing for the
configurational entropy of disorder. Consequently, the
functional form of his modeled entropy of mixing does
not incorporate the correct low-temperature limiting be-
havior as displayed in Figure 2. This failure results in
increasingly more pronounced differences between our
model results (Fig. 11) and those of Fonarev as temper-
ature is progressively lowered.

Our calculated 700°C isotherm is consistent with the
experimentally determined values for orthoamphibole in
Popp et aI. (1977). It should be noted that, at elevated
temperatures and Mg-rich compositions, the activity-

0.9

0.7

0.5

0.3

0.1

0.1 0.3 0.5 0.7 0.9
Fig. 11. Activity-composition relations for Mg- and Fe-end-

members of cummingtonite. Note that activities are referenced
to a one-site basis.
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Fig. 12. poT phase diagram showing the calculated stability
limit of Fe-Mg cummingtonite (as isop1eths of XFein cumming-
tonite) with respect to quartz, H20, and orthopyroxene (at high
P and T) and olivine (at low P and 1). Dashed lines are isop1eths
in the magnesio-cummingtonite range. At high P and T cum-
mingtonite is metastable with respect to talc + orthopyroxene.

composition relations for Mg7Sig022(OH)2 closely ap-
proach those of ideal mixing.

As a final application, we have constructed (Fig. 12) a
P-T stability diagram at quartz saturation for the system
FeO-MgO-Si02-H20 with fields for Fe-Mg cummington-
ite, olivine, and orthopyroxene. Contours denote mole
percent grunerite in the cummingtonite. The P- T curve
of the four-phase assemblage (cummingtonite + ortho-
pyroxene + olivine + quartz) has a temperature maxi-
mum at about 3 kbar (see enlargement in Fig. 7). The
maximum stability limit of cummingtonite at quartz sat-
uration (with breakdown to orthopyroxene) occurs at about
8 kbar and 830 °C for an approximate composition of 25
mol% grunerite end-member. Although it might be tempt-
ing to attribute this extremum to the same stabilization
energy that generates the minima in G ex and H mix of Figure
10, the correspondence is fortuitous. The temperature ex-
tremum at XFe of -0.25 results from a combination of
standard-state and solution properties of both cumming-
tonite and orthopyroxene. The extremum composition
actually shifts from -0.30 at I kbar to -0.20 at 20 kbar.
A metastable extremum involving cummingtonite and
olivine occurs, if at all, at very high temperature with

X~~m < 0.2. Our calculations demonstrate that olivine
and cummingtonite coexist over a restricted range of PoT
conditions and that the maximum temperature of coex-
istence (740 OC)virtually precludes this phenocryst assem-
blage from occurring in silicic volcanic rocks (unless sta-
bilization by AI, FeH, and Ca is significant).
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