A new biogenic, struvite-related phosphate, the ammonium-analog of hazenite, (NH₄)NaMg₂(PO₄)₂·14H₂O

HEXIONG YANG^{1,*}, LIVIA MARTINELLI^{2,3}, FLAVIA TASSO³, ANNA ROSA SPROCATI³, FLAVIA PINZARI^{2,4}, ZHENXIAN LIU⁵, ROBERT T. DOWNS¹ AND HENRY J. SUN⁶

¹Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721, U.S.A.

²Istituto Centrale per il Restauro e la Conservazione del Patrimonio Archivistico e Librario, Rome, Italy

³Unità Tecnica Caratterizzazione, Prevenzione e Risanamento Ambientale, ENEA-CASACCIA, Rome, Via Anguillarese 301, 00123 Rome, Italy

⁴Consiglio per la Ricerca e la sperimentazione in Agricoltura Centro di ricerca per lo studio delle relazioni tra pianta e suolo,

Via della Navicella 2-4, 00184 Rome, Italy

⁵Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015, U.S.A.

⁶Desert Research Institute, 755 Flamingo Road, Las Vegas, Nevada 89119, U.S.A.

ABSTRACT

A new biogenic, struvite-related phosphate, the ammonium analog of hazenite (AAH), ideally (NH₄) NaMg₂(PO₄)₂·14H₂O, has been found in cultures containing the bacterial strain *Virgibacillus* sp.NOT1 (GenBank Accession Number: JX417495.1) isolated from an XVII Century document made of parchment. The chemical composition of AAH, determined from the combination of electron microprobe and X-ray structural analyses, is $[(NH_4)_{0.78}K_{0.22}]$ NaMg₂(PO₄)₂·14H₂O. Single-crystal X-ray diffraction shows that AAH is orthorhombic with space group *Pmnb* and unit-cell parameters *a* = 6.9661(6), *b* = 25.236(3), *c* = 11.292(1) Å, and *V* = 1985.0(3) Å³. Compared with hazenite, the substitution of NH₄⁺ for K⁺ results in a noticeable increase of the average *A*-O (*A* = NH₄⁺+K⁺) bond length and the unit-cell volume for AAH, as also observed for struvite vs. struvite-K. Both infrared and Raman spectra of AAH resemble those of hazenite, as well as struvite. Our study reveals that AAH forms only in cultures with Na-bearing solutions and pH below 10.0. No AAH or hazenite was found in experiments with the K-bearing solutions, suggesting the necessity of a Na-bearing solution for AAH formation.

Keywords: Ammonium phosphate, hazenite, struvite-type materials, biomineral, crystal structure, X-ray diffraction, infrared and Raman spectra