A comparison of the Ca₃(PO₄)₂ and CaSiO₃ systems, with a new structure refinement of tuite synthesized at 15 GPa and 1300 °C

RICHARD M. THOMPSON,^{1,*} XIANDE XIE,² SHUANGMENG ZHAI,³ ROBERT T. DOWNS,¹ AND HEXIONG YANG¹

¹Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A.

²Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China ³Key Laboratory of Orogenic Belts and Crustal Evolution, MOE; School of Earth and Space Sciences, Peking University, Beijing 100871, China

ABSTRACT

Tuite, the high-pressure γ -form of the Ca₃(PO₄)₂ system, has been synthesized from chlorapatite at 15 GPa and 1300 °C using a multi-anvil apparatus. Its crystal structure was determined with single-crystal X-ray diffraction. It is isostructural with palmierite, with space group $R\overline{3}m$ and unit-cell parameters a = 5.2522(9) and c = 18.690(3) Å. The structure of tuite is characterized by three distinct polyhedra, PO₄, Ca1O₁₂, and Ca2O₁₀, that are translationally interconnected in the sequence of PO₄-Ca2O₁₀-Ca1O₁₂-Ca2O₁₀-PO₄ along the **c** axis.

Comparison of the CaSiO₃ and Ca₃(PO₄)₂ polymorphic systems shows a striking resemblance in the evolution of atomic packing arrangements as the polymorphic density increases. In both cases, the Ca atoms are progressively incorporated into the (Ca+O) close-packed monolayers, consistent with the hypothesis that close packing is a consequence of volume decrease as density increases. Based on this observation, we predict a possible high-pressure post-tuite phase.

Keywords: Tuite, Ca₃(PO₄)₂, whitlockite, close-packing, pseudowollastonite, wollastonite, perovskite, CaSiO₃