The system K₂CO₃-MgCO₃ at 6 GPa and 900–1450 °C

ANTON SHATSKIY,^{1,2,*} IGOR S. SHARYGIN,^{1,2} PAVEL N. GAVRYUSHKIN,^{1,2} KONSTANTIN D. LITASOV,^{1,2} YURI M. BORZDOV,¹ ANASTASIA V. SHCHERBAKOVA,³ YUJI HIGO,⁴ KEN-ICHI FUNAKOSHI,⁴ YURI N. PALYANOV,^{1,2} AND EIJI OHTANI⁵

¹V.S. Sobolev Institute of Geology and Mineralogy, Russian Academy of Science, Siberian Branch, Koptyuga pr. 3, Novosibirsk 630090, Russia ²Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia

³John and Willie Leone Family Department of Energy and Mineral Engineering, Penn State University, University Park, 16802 Pennsylvania, U.S.A. ⁴Japan Synchrotron Radiation Research Institute, SPring-8, Kouto, Hyogo 678-5198, Japan

⁵Department of Earth and Planetary Material Science, Tohoku University, Sendai 980-8578, Japan

ABSTRACT

Phase relations in the K₂CO₃-MgCO₃ system have been studied in high-pressure high-temperature (HPHT) multi-anvil experiments using graphite capsules at 6.0 ± 0.5 GPa pressures and 900–1450 °C temperatures. Subsolidus assemblies comprise the fields K₂CO₃+K₂Mg(CO₃)₂ and K₂Mg(CO₃)₂+MgCO₃ with the transition boundary near 50 mol% MgCO₃ in the system. The K₂CO₃-K₂Mg(CO₃)₂ eutectic is established at 1200 °C and 25 mol% MgCO₃. Melting of K₂CO₃ occurs between 1400 and 1450 °C. We propose that K₂Mg(CO₃)₂ disappears between 1200 and 1300 °C via congruent melting. Magnesite is observed as a subliquidus phase to temperatures in excess of 1300 °C.

At 6 GPa, melting of the $K_2Mg(CO_3)_2+MgCO_3$ assemblage can be initiated either by heating to 1300 °C under "dry" conditions or by adding a certain amount of water at 900–1000 °C. Thus, the $K_2Mg(CO_3)_2$ could control the solidus temperature of the carbonated mantle under "dry" conditions and cause formation of the K- and Mg-rich carbonatite melts similar to those found as microinclusions in "fibrous" diamonds.

The K₂Mg(CO₃)₂ compound was studied using in situ X-ray coupled with a DIA-type multi-anvil apparatus. At 6.5 GPa and 1000 °C, the structure of K₂Mg(CO₃)₂ was found to be orthorhombic with lattice parameters a = 8.8898(7), b = 7.8673(7), and c = 5.0528(5), V = 353.39(4). No structure change was observed during pressure decrease down to 1 GPa. However, recovered K₂Mg(CO₃)₂ exhibited a trigonal $R\overline{3}m$ structure previously established at ambient conditions.

Keywords: $K_2Mg(CO_3)_2$, high-pressure, experiment, carbonatite, upper mantle, potassium carbonate, kimberlite, diamond