High-pressure structural studies of eskolaite by means of single-crystal X-ray diffraction

ANASTASIA KANTOR,^{1,2,*} INNOKENTY KANTOR,² MARCO MERLINI,³ KONSTANTIN GLAZYRIN,¹ CLEMENS PRESCHER,¹ MICHAEL HANFLAND,² AND LEONID DUBROVINSKY¹

¹Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany ²European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, CEDEX 9, France ³Universita degli Studi di Milano, Dipartimento di Scienze della Terra, Via Botticelli 23, 20133 Milano, Italy

ABSTRACT

The structural behavior of Cr_2O_3 was investigated up to ~70 GPa using single-crystal X-ray diffraction under a quasi-hydrostatic pressure (neon pressure medium) at room temperature. The crystal structure remains rhombohedral with the space group $R\overline{3}c$ (No. 167) and upon compression the oxygen atoms approach an ideal hexagonal close-packing arrangement. An isothermal bulk modulus of Cr_2O_3 and its pressure derivative were found to be 245(4) GPa and 3.6(2), respectively, based on a third-order Birch-Murnaghan equation of state and $V_0 = 288.73$ Å³. An analysis of the crystal strains suggest that the non-hydrostatic stresses can be considered as negligible even at the highest pressure reached. **Keywords:** High pressure, crystal structure, eskolaite