American Mineralogist, Volume 97, pages 1193–1198, 2012

A new cubic perovskite in PbGeO₃ at high pressures

WANSHENG XIAO,^{1,*} DAYONG TAN,¹ WEI ZHOU,¹ MING CHEN,^{1,2} XIAOLIN XIONG,² MAOSHUANG SONG,² JING LIU,³ HO-KWANG MAO,^{4,5} AND JIAN XU^{6,7}

¹Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
²State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
³Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
⁴Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015, U.S.A.
⁵High Pressure Collaborative Access Team, Carnegie Institution of Washington, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
⁶Institute of Atomic and Molecular Physics, Schuan University, Chengdu, 610065, China

⁷Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China

ABSTRACT

A new cubic perovskite polymorph of PbGeO₃ (Phase II) was synthesized by laser heating in the diamond-anvil cell (DAC) at the pressure of 36 GPa. Fitting the Birch-Murnaghan equation of state against its observed *P*-*V* data yields a bulk modulus K_0 of 196(6) GPa and the volume V_0 of 56.70(13) Å³ when K'_0 is assumed being 4. After the pressure is released, the PbGeO₃ Phase II changes gradually into an amorphous phase, which contains mainly fourfold-coordinated germanium. It indicates that the PbGeO₃ Phase II with a GeO₆ octahedron framework transforms to a GeO₄ tetrahedron network during the amorphization. The existence of PbGeO₃ cubic perovskite Phase II at high pressures indicates that the polarized character of the Pb²⁺ ion induced by its $6s^2$ lone pair electrons would be totally reduced in the environment of major silicate perovskites inside the lower mantle, and thus the Pb atom would substitute the Ca atom to enter the CaSiO₃ perovskite.

Keywords: Lead germanate, cubic perovskite, high pressure, amorphization