Aluminum solubility in TiO₂ rutile at high pressure and experimental evidence for a CaCl₂-structured polymorph

ALBERTO ESCUDERO,^{1,*} FALKO LANGENHORST,^{1,2} AND WOLFGANG F. MÜLLER³

¹Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

²Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, D-07745 Jena, Germany ³Institut für Angewandte Geowissenschaften, Geomaterialwissenschaft, Technische Universität Darmstadt, Schnittspahnstrasse 9, D-64287 Darmstadt, Germany

ABSTRACT

Aluminum incorporation into TiO₂ has been studied in the TiO₂-Al₂O₃ system as a function of pressure at temperatures of 900 and 1300 °C using commercial Al₂TiO₅ nanopowder as starting material. A new orthorhombic TiO₂ polymorph with the CaCl₂ structure has been observed in the recovered samples synthesized from 4.5 to 7 GPa and 900 °C and from 2.5 to 7 GPa at 1300 °C. The phase transition to the α -PbO₂ type TiO₂ phase takes place between 7 and 10 GPa at both temperatures. Two mechanisms of Al incorporation in TiO₂ rutile have been observed in the recovered samples. The substitution of Ti⁴⁺ by Al³⁺ on normal octahedral sites is dominant at lower pressures. High pressure induces the incorporation of Al³⁺ into octahedral interstices of the rutile structure, which is responsible for an orthorhombic distortion of the TiO₂ rutile structure and gives rise to a (110) twinned CaCl₂ type structure. This phase is probably a result of temperature quench at high pressure. Aluminum solubility in TiO₂ increases with increasing pressure. TiO₂ is able to accommodate up to 9.8 wt% Al₂O₃ at 7 GPa and 1300 °C. Temperature has a large effect on both the chemistry and the microstructure of Al-doped TiO₂. Enhanced aluminum concentration in TiO₂ rutile as well as TiO₂ grains with a microstructure consisting of twins are a clear indication of high-pressure conditions.

Keywords: Rutile, alumina, CaCl₂ type structure, multi-anvil experiments, phase transition, twinning, transmission electron microscopy