Twinning in pyromorphite: The first documented occurrence of twinning by merohedry in the apatite supergroup

STUART J. MILLS,^{1,2,*} GIOVANNI FERRARIS,³ ANTHONY R. KAMPF,² AND GEORGES FAVREAU⁴

¹Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Australia

²Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.
³Dipartimento di Scienze Mineralogiche e Petrologiche, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy
⁴421 Avenue Jean Monnet, 13090 Aix-en-Provence, France

ABSTRACT

We describe the first documented case of $\{10\overline{1}0\}$ twinning by reflection (or by twofold rotation about [100]) or merohedry (class II) in a member of the apatite supergroup. Twinning about [100] had previously been noted for the apatite supergroup but not confirmed. Pyromorphite crystals from Puech de Compolibat, Combret, Aveyron, France, were studied by single-crystal X-ray diffraction [a = 10.0017(19), c = 7.3413(16) Å, and V = 636.0(2) Å³, in $P6_3/m$], where twinning was confirmed with the approximate twin fraction 62:38. Subsequent inspection of the morphology confirmed the nature of the twinning. The pyromorphite crystals are typically elongate and show the faces: $(2\overline{1}10)$, $(\overline{2}110), (000\overline{1}), (10\overline{10}), (\overline{1010}), (10\overline{12}),$ and $(\overline{1012})$.

Keywords: Twinning by merohedry class II, pyromorphite, Puech de Compolibat, apatite supergroup, crystal structure