The crystal structure of franckeite, Pb_{21.7}Sn_{9.3}Fe_{4.0}Sb_{8.1}S_{56.9} E. MAKOVICKY,^{1,*} V. PETŘÍČEK,² M. DUŠEK,² AND D. TOPA³

Department of Geography and Geology, University of Copenhagen, Østervoldgade 10, DK1350 Copenhagen, Denmark

²Institute of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-18040 Prague 8, Czech Republic ³Department of Material Research and Physics, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria

ABSTRACT

The layer-like crystal structure of franckeite from the mine of San José, Bolivia, exhibits a pronounced one-dimensional transversal wave-like modulation and a non-commensurate layer match in two dimensions. It consists of alternating pseudohexagonal (H) layers and pseudotetragonal (O) slabs and forms a homologous pair with cylindrite, which has thinner Q slabs. The Q slabs in franckeite are four atomic layers thick. The two components have their own lattices and a common modulation. The Q slab of the refined franckeite structure, $Pb_{21,74}Sn_{2,34}Fe_{3,95}Sb_{8,08}S_{56,87}$, is an MS layer (M = Pb²⁺, Sn²⁺, Sb³⁺) four atomic planes thick, with a = 5.805(8), b = 5.856(16) Å, and the layer-stacking vector c =17.338(5) Å. The lattice angles are $\alpha = 94.97(2)^\circ$, $\beta = 88.45(2)^\circ$, $\gamma = 89.94(2)^\circ$; the modulation vector $q = -0.00129(8) a^* + 0.128436(10) b^* - 0.0299(3) c^*$. The H layer is a single-octahedron MS₂ layer $(M = Sn^{4+}, Fe^{2+})$ with a = 3.665(8), b = 6.2575(16), c = 17.419(5) Å, $\alpha = 95.25(2)^{\circ}, \beta = 95.45(2)^{\circ}, \gamma = 10.419(2)^{\circ}$ $89.97(2)^{\circ}$; the modulation vector is $q = -0.00087(8) a^{*} + 0.13725(16) b^{*} - 0.0314(4) c^{*}$. The **a** and **b** vectors of both subsystems are parallel; the **c** vectors diverge. (3+2)D superspace refinement was performed in the superspace group $C\overline{I}$, using 7397 observed reflections. It resulted in the overall R(obs) value equal to 0.094. The Q slabs are composed of two tightly bonded double-layers, separated by an interspace hosting non-bonding electron pairs. Average composition of cations on the outer surface was refined as $Pb_{0.74}(Sn,Sb)_{0.26}$, whereas that of cations, which are adjacent to the interspace with lone electron pairs, with a configuration analogous to that observed in orthorhombic SnS, corresponds to (Sn,Sb)_{0.73}Pb_{0.27}. Iron is dispersed over the octahedral Sn⁴⁺ sites in the H layer. Transversal modulation of the Q slab is achieved by local variations in the Pb:(Sn,Sb) ratios at its surface and interior. Its purpose is to re-establish a one-dimensional commensurate contact along [010] between the curved Q and H surfaces to the greatest extent possible. Layer-stacking disorder and divergence of the Q and H stacking directions, and the divergence between modulation wave-front and these stacking directions are typical for the composite structures of franckeite and cylindrite. Because of the increased rigidity of the Q component, franckeite usually forms masses of curved crystals rather than cylindrical aggregates. The existence of this family depends critically on the radius ratios of the cations involved, especially those involving (Pb²⁺, Sn²⁺) and Sn⁴⁺. Their replacement by a Pb²⁺:Bi³⁺ combination leads to misfit layer structures of a very different type, typified by cannizzarite.

Keywords: Franckeite, Pb-Sn-Sb-Fe sulfide, modulated layer-misfit crystal structure, 2D-noncommensurate layer structure, San José, Bolivia