American Mineralogist, Volume 96, pages 1838-1850, 2011

In situ ion-microprobe determination of trace element partition coefficients for hornblende, plagioclase, orthopyroxene, and apatite in equilibrium with natural rhyolitic glass, Little Glass Mountain Rhyolite, California

JAMES G. BROPHY,^{1,*} TSUTOMU OTA,² TAK KUNIHRO,² TATSUKI TSUJIMORI,² AND EIZO NAKAMURA²

¹Department of Geological Sciences, Indiana University, Bloomington, Indiana 47401, U.S.A. ²The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry (PML), Institute for Study of the Earth's Interior, Okayama University at Misasa, Tottori-Ken 682-0193, Japan

ABSTRACT

Partially crystalline hornblende gabbro inclusions from the Little Glass Mountain Rhyolite contain euhedral plagioclase, orthopyroxene, hornblende, and apatite crystals in contact with interstitial rhyolitic $(71-76\% SiO_2)$ glass. Textural and mineral compositional data indicate that the gabbros crystallized sufficiently slowly that surface equilibrium was closely approached at the interface between crystals and the liquid. This rare occurrence represents a natural dynamic crystallization experiment with a "run time" that is not realistically achievable in the laboratory. SIMS analysis of mineral rim-glass pairs have permitted the determination of high-quality, equilibrium trace-element partition coefficients for all four minerals. These data augment the limited partition coefficient database for minerals in high-SiO₂ rhyolitic systems. For all minerals, the D values are consistent with those anticipated from crystal-chemical considerations. These data further support a liquid SiO₂ control on the REEs (and presumably other elements) partitioning wherein D values systematically increase with increasing liquid SiO₂ content.

Keywords: Ion microprobe, rhyolite glass, trace element, partition coefficient