American Mineralogist, Volume 95, pages 747-753, 2010

Effect of iron on the compressibility of hydrous ringwoodite

GEERTJE GANSKOW,* TIZIANA BOFFA BALLARAN, AND FALKO LANGENHORST

Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany

ABSTRACT

Single crystals of hydrous ferroan ringwoodites with compositions (Mg_{0.97}Fe_{1.00})_{1.97}Si_{0.98}H_{0.13}O₄ and (Mg_{1.21}Fe_{0.66}Fe_{0.1})_{1.97}Si_{0.97}H_{0.06}O₄ have been synthesized. Their lattice parameters at ambient conditions are a = 8.1597(6) Å and V = 543.28(13) Å³ and a = 8.1384(3) Å and V = 539.03(7) Å³, respectively. The unit-cell lattice parameters were measured at different pressures up to about 9 GPa by means of X-ray single-crystal diffraction. The *P-V* data were fitted with a second-order Birch-Murnaghan equation of state (*K'* fixed to the value of 4) refining to the following equation of state parameters: $V_0 = 543.32(7)$ Å³ and $K_{T0} = 186.5(9)$ GPa for (Mg_{0.97}Fe_{1.00})_{1.97}Si_{0.98}H_{0.13}O₄ and $V_0 = 539.01(5)$ Å³ and $K_{T0} = 184.1(7)$ GPa for (Mg_{1.21}Fe_{0.66}²⁺Fe_{0.1})_{1.97}Si_{0.97}H_{0.06}O₄. Structural refinements indicate the presence of significant octahedral vacancies in sample (Mg_{1.21}Fe_{0.66}²⁺Fe_{0.1})_{1.97}Si_{0.97}H_{0.06}O₄ due to the oxidation of 0.1 apfu of ferric iron. Correlation between the O-O distances of the octahedral edges and the shift of the OH-stretching frequency suggest that the H incorporation occurs at the octahedral site.

Keywords: Compressibility, hydrous ringwoodite, single crystal, IR spectrum