Crystal chemistry of the $\mathrm{MgAl}_{2} \mathrm{O}_{4}-\mathrm{MgMn}_{2} \mathrm{O}_{4}-\mathrm{MnMn}_{2} \mathrm{O}_{4}$ system: Analysis of structural distortion in spinel- and hausmannite-type structures

Ferdinando Bosi, ${ }^{1,2, *}$ Ulf HÅlenius, ${ }^{3}$ and Henrik Skogby ${ }^{3}$

${ }^{1}$ Dipartimento di Scienze della Terra, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy ${ }^{2}$ CNR-IGG Istituto di Geoscienze e Georisorse, Sede di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
${ }^{3}$ Department of Mineralogy, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden

Abstract

Single crystals of spinel and hausmannite having seven different compositions in the $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ $\mathrm{MgMn}_{2} \mathrm{O}_{4}-\mathrm{MnMn}_{2} \mathrm{O}_{4}$ system were synthesized and structurally and chemically characterized by X-ray diffraction and electron microprobe techniques. As predicted, tetrahedral and octahedral bond lengths increase with increasing substitutions of Mn^{2+} for Mg and Mn^{3+} for Al , respectively. A transition from cubic to tetragonal symmetry occurs at a critical concentration of $\mathrm{Mn}^{3+}>1.4$ atoms per formula unit as a result of the Jahn-Teller distortion around octahedrally coordinated Mn^{3+}.

The present data in conjunction with data from the literature provide a basis for quantitative analyses of the cation polyhedral-distortion parameters and their variations in spinel- and hausmannite-type structures ($F d \overline{3} m$ and $I 4_{1} / a m d$, respectively). In contrast to the linear correlation between $<\lambda_{M}>$ (octahedral quadratic elongation) and $\sigma^{2}{ }_{M}$ (octahedral bond-angle variance) observed for many silicates and isomorphic structures, these two distortion parameters are not correlated in multiple oxides with spinel- and hausmannite-type structures. By using a model of multiple linear regression, it is demonstrated that $<\lambda_{\mathrm{M}}>$ varies as a function of both $\sigma^{2}{ }_{\mathrm{M}}$ and Δ_{M} (octahedral bond-length distortion). The degree of octahedral distortion is significant in the spinel structures and is in fact comparable with that calculated for the hausmannite-type structures. The degree of octahedral distortion is related to steric effects in both spinel- and hausmannite-type structures, whereas the electronic effects caused by Mn^{3+} account for the transition from cubic to tetragonal symmetry.

Keywords: Crystal structure, spinel, hausmannite, XRD data, chemical analysis, polyhedral distortion

