Influence of cation size on the low-temperature heat capacity of alkaline earth metasilicate glasses

PASCAL RICHET,^{1,*} ATSUSI NIDAIRA,¹ DANIEL R. NEUVILLE,² AND TOORU ATAKE¹

¹Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503 Japan ²Physique des Minéraux et des Magmas, Institut de Physique du Globe, 4 place Jussieu, 75252 Paris cedex 05, France

ABSTRACT

The heat capacities of Sr and Ba metasilicate glasses and of a Mg silicate glass with only 44 mol% SiO₂ have been measured between 2 and 300 K with the Quantum Design Physical Property Measurement System. The derived vibrational entropies S_{298} - S_0 are 50.90, 61.00, and 36.65 J/(mol·K) for Sr_{0.5}Si_{0.5}O_{1.5}, Ba_{0.5}Si_{0.5}O_{1.5}, and Mg_{0.56}Si_{0.44}O_{1.44} glasses, respectively. Along with available data for Mg- and Ca-bearing glasses, these results indicate a regular variation of the partial molar vibrational entropy of the metal oxide as a function of the ionization potential of the cation. At very low temperatures, however, the excess heat capacity of barium metasilicate glass relative to Debye limiting T^3 law is stronger than expected from such a trend, whereas Mg_{1.12}Si_{0.88}O_{2.88} is the known glass whose C_p deviates the less from this law.

Keywords: Heat capacity, entropy, alkaline earth silicate glasses