LETTER

Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain complex, N.E. Oregon

BERNARD W. EVANS,^{1,*} SCOTT M. KUEHNER,¹ AND ANASTASIA CHOPELAS²

¹Department of Earth and Space Sciences, Box 351310, University of Washington, Seattle, Washington 98195-1310, U.S.A. ²Institute of Geophysics and Planetary Physics, University of California Los Angeles, Box 951567, Los Angeles, California 90095-1567, U.S.A.

ABSTRACT

We document an example of serpentinization of olivine and orthopyroxene that produced virtually no magnetite, but instead relatively Fe-rich yellow-colored lizardite ($X_{Fe} = 0.08$ to 0.17), and the native Fe-Ni-Co metals, awaruite and wairauite. Lizardite's identity was confirmed by micro-Raman spectroscopy, although peaks are broad. Electron microprobe analyses of the lizardite yield a continuous compositional trend of formula contents suggestive of the progressive uptake of Fe³⁺ exclusively on M sites, where it is charge balanced by vacancies. Although these observations are unusual, this secondary mineral assemblage can be explained in terms of the likely intensive variables T, f_{H_2O} , f_{H_2} , and a_{SiO_2} attending the alteration. The absence of magnetite in serpentinization does not signify a lack of oxidation. By forming the hydrated phase-component ferri-lizardite instead of magnetite from the fayalite and ferrosilite components, the yield of hydrogen is reduced by two-thirds. The usual inverse correlation of rock density with magnetic susceptibility is unlikely to be the case in this kind of serpentinization.

Keywords: Serpentinite, ferrian lizardite, olivine-websterite, micro-Raman, hydrogen, magnetic susceptibility