American Mineralogist, Volume 94, pages 845-848, 2009

LETTER

Davisite, CaScAlSiO₆, a new pyroxene from the Allende meteorite

CHI MA* AND GEORGE R. ROSSMAN

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, Califonia 91125, U.S.A.

ABSTRACT

Davisite, ideally CaScAlSiO₆, is a new member of the Ca clinopyroxene group, where Sc³⁺ is dominant in the M1 site. It occurs as micro-sized crystals along with perovskite and spinel in an ultra-refractory inclusion from the Allende meteorite. The mean chemical composition determined by electron microprobe analysis is (wt%) SiO₂ 26.24, CaO 23.55, Al₂O₃ 21.05, Sc₂O₃ 14.70, TiO₂ (total) 8.66, MgO 2.82, ZrO₂ 2.00, Y₂O₃ 0.56, V₂O₃ 0.55, FeO 0.30, Dy₂O₃ 0.27, Gd₂O₃ 0.13, Er₂O₃ 0.08, sum 100.91. Its empirical formula calculated on the basis of 6 O atoms is Ca_{0.99}(Sc_{0.50}Ti³⁺_{0.16}Mg_{0.16}Ti⁴⁺_{0.10}Zr_{0.04}V³⁺_{0.02}Fe²⁺_{0.01}Y_{0.01})_{Σ1.00}(Si_{1.03}Al_{0.97})_{Σ2.00}O₆. Davisite is monoclinic, *C2/c*; *a* = 9.884 Å, *b* = 8.988 Å, *c* = 5.446 Å, β = 105.86°, *V* = 465.39 Å³, and *Z* = 4. Its electron back-scattered diffraction pattern is an excellent match to that of synthetic CaScAlSiO₆ with the *C2/c* structure. The strongest calculated X-ray powder diffraction lines are [*d* spacing in Å (*I*) (*hkI*)]: 3.039 (100) ($\overline{2}$ 21), 2.989 (31) (310), 2.943 (18) ($\overline{3}$ 11), 2.619 (40) (002), 2.600 (26) ($\overline{1}$ 31), 2.564 (47) (221), 2.159 (18) ($\overline{3}$ 31), 2.137 (15) ($\overline{4}$ 21), 1.676 (20) ($\overline{2}$ 23), and 1.444 (18) (531). The name is for Andrew M. Davis, a cosmochemist at the University of Chicago, Illinois.

Keywords: Davisite, CaScAlSiO₆, new mineral, Sc-rich pyroxene, refractory phase, ultra-refractory inclusion, Allende meteorite