Single crystal growth of wadsleyite

ANTON SHATSKIY,^{1,2,*} KONSTANTIN D. LITASOV,^{1,2} TAKUYA MATSUZAKI,³ KEIJI SHINODA,⁴ DAISUKE YAMAZAKI,³ AKIRA YONEDA,³ EIJI ITO,³ AND TOMOO KATSURA³

¹Department of Earth and Planetary Material Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
²V.S. Sobolev Institute of Mineralogy and Petrology, SB RAS, Novosibirsk 630090, Russia
³Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori 682-0193, Japan
⁴Department of Geosciences, Osaka City University, Osaka 590-0494, Japan

ABSTRACT

We have synthesized large (0.7–1.0 mm) crystals of anhydrous, water-bearing, and Fe-bearing wadsleyite by means of growth from solution in the thermal gradient field. Nearly anhydrous (<68±4 wt ppm H₂O) Mg₂SiO₄ crystals were grown using K₂Mg(CO₃)₂ as a solvent at 16.5 GPa and 1700 °C. (Mg_{0.92}Fe_{0.08})₂SiO₄ crystals containing 84±17 wt ppm H₂O were grown using 92K₂Mg(CO₃)₂-8FeCl₂ as a solvent. Crystals of Fe-free wadsleyite with 1496±117 wt ppm H₂O were synthesized at 1400 °C and 15.5 GPa by using 2KHCO₃-Mg(OH)₂ as a solvent.

Keywords: Mg₂SiO₄, wadsleyite, single crystal growth, high pressure, thermal gradient method