Change in compressibility of δ-AlOOH and δ-AlOOD at high pressure: A study of isotope effect and hydrogen-bond symmetrization

Asami Sano-Furukawa,^{1,2,*} Hiroyuki Kagi,³ Takaya Nagai,⁴ Satoshi Nakano,⁵ Satoshi Fukura,³ Daichi Ushijima,³ Riko Iizuka,³ Eiji Ohtani,¹ and Takehiko Yagi²

¹Department of Earth and Planetary Materials Science, Tohoku University, Sendai 980-8578, Japan ²Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan ³Geochemical Laboratory, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan ⁴Department of Natural History of Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan ⁵National Institute for Materials Science, Tsukuba 305-0044, Japan

ABSTRACT

The compression behaviors of δ -AlOOH and δ -AlOOD were investigated under quasi-hydrostatic conditions at pressures up to 63.5 and 34.9 GPa, respectively, using results from synchrotron X-ray diffraction experiments conducted at ambient temperature. Because of the geometric isotope effect, at ambient pressure, the *a* and *b* axes of δ -AlOOD, which define the plane in which the hydrogen bond lies, are longer than those of δ -AOOH. Under increasing pressure, the *a* and *b* axes of δ -AlOOD, but the change in compressibility was observed at a slightly higher pressure of 12 GPa. Axial ratios *a/c* and *b/c* first decrease rapidly with increasing pressure, the pressure dependence of *a/b* also changes from increasing to decreasing. The unit-cell volumes of δ -AlOOH and δ -AlOOD become slightly less compressible at high pressures. Assuming $K'_0 = 4$, the calculated bulk moduli of δ -AlOOH below and above 10 GPa are 152(2) and 219(3) GPa, respectively. Those of δ -AlOOD below and above 12 GPa are 151(1) and 207(2) GPa, respectively.

Keywords: δ-AlOOH, δ-AlOOD, hydrogen bond, symmetrization, high pressure, isotope effect