Hematite and magnetite precipitates in olivine from the Sulu peridotite: A result of dehydrogenation-oxidation reaction of mantle olivine?

SHYH-LUNG HWANG,¹ TZEN-FU YUI,^{2,*} HAO-TSU CHU,³ POUYAN SHEN,⁴ YOSHIYUKI IIZUKA,² HOUNG-YI YANG,⁵ JINGSUI YANG,⁶ AND ZHIQIN XU⁶

¹Department of Materials Science and Engineering, National Dong Hwa University, Hualien, Taiwan, ROC ²Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan, ROC ³Central Geological Survey, P.O. Box 968, Taipei, Taiwan, ROC ⁴Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC ⁵Department of Earth Sciences, National Cheng-Kung University, Tainan, Taiwan, ROC ⁶Key Laboratory of Continental Dynamics, Ministry of Land and Resources. Institute of Geology, Chinese Academy of Geological Sciences,

Beijing 100037, China

ABSTRACT

Analytical electron microscopic observations have been carried out on a garnet peridotite from the Maobei area, Sulu ultrahigh-pressure terrane. The results showed that olivine in this garnet peridotite (5.3–6.6 GPa; 853–957 °C), contains precipitates of chromian magnetite and chromian-titanian hematite at dislocations and (001) faults. Specific crystallographic relationships were determined between these precipitates and the olivine host, viz. $[101]_{Mt}/[001]_{OI}$, $[110]_{Mt}/[0\overline{1}1]_{OI}$, and $[0\overline{1}1]_{Mt}/[011]_{OI}$; and $[0001]_{Hm}/[100]_{Ol}$ and $[10\overline{10}]_{Hm}/[001]_{Ol}$. These oriented oxides are not associated with silicate/silica phases and therefore cannot be accounted for by the mechanism of olivine oxidation. It is postulated that these magnetite and hematite precipitates most likely have resulted from dehydrogenation-oxidation of nominally anhydrous mantle olivine during rock exhumation. In view of the contrasting diffusion rates of H and Fe in the olivine lattice, it is suggested that the formation process might actually take place in steps. Hydrogen diffusion with concomitant quantitative oxidation of Fe²⁺ to Fe³⁺ in olivine occurred early during initial rock exhumation and was followed by slow Fe diffusion forming magnetite/hematite at stacking faults and dislocations within the olivine lattice. Two requirements are essential under such a scenario: an ample amount of H content of the olivine, and an appropriate exhumation rate, probably in the range of 6-11 mm/year, of the host rock. It is also noted that such dehydrogenation-oxidation processes may hamper a correct estimate of the actual P-T conditions and mantle oxidation state based on mineral chemistries present in mantle eclogite/peridotite. The present study demonstrates that oriented mineral inclusions may not necessarily form through exsolution processes sensu stricto, but may form through a series of more complicated reaction mechanisms.

Keywords: Magnetite, hematite, olivine, dehydrogenation-oxidation, UHP peridotite