Structural characterization of natural UO₂ at pressures up to 82 GPa and temperatures up to 2200 K

STEEVE GRÉAUX,^{1,*} LAURENT GAUTRON,^{1,†} DENIS ANDRAULT,^{2,3} NATHALIE BOLFAN-CASANOVA,³ NICOLAS GUIGNOT,^{4,}‡ AND JULIEN HAINES⁵

¹Laboratoire des Géomatériaux et Géologie de l'Ingénieur, Université Paris-Est Marne la Vallée, France
²Institut de Minéralogie et de Physique des Milieux Condensés, Paris, France
³Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, France
⁴European Synchrotron Radiation Facility, Grenoble, France
⁵Institut Charles Gerhardt Montpellier, Université de Montpellier, Montpellier, France

ABSTRACT

Uranium is one of the main heat sources in the Earth, as about 25% of the total heat is produced by the radioactive decay of U. The location of U in the deep mantle is then essential for a better understanding of the geodynamics and thermal behavior of the Earth. For the first time, the crystal structure of natural simple dioxide UO₂ uraninite has been studied by X-ray diffraction with synchrotron radiation (ESRF, Grenoble, France), in situ in a laser-heated diamond-anvil cell at pressures and temperatures relevant to the deep Earth's mantle. Fluorite-type UO₂ displays a new sequence of phase transitions at high *P* and *T*, with a cubic modified fluorite $Pa\bar{3}$ observed at 18 GPa, and an orthorhombic *Pbca* structure from 33 GPa up to 82 GPa. Using a second-order Birch-Murnaghan equation of state, we calculated room-pressure bulk modulus $K_0 = 166(7)$ GPa with pressure derivative $K'_0 = 4.0$ for the $Pa\bar{3}$ structure, and $K_0 = 225(8)$ GPa with $K'_0 = 4$ for the *Pbca* structure. The expected *Pnma* cotunnite structure was not observed but is not excluded at pressures higher than 82 GPa. Since UO₂ displays a *Pbca* structure stable up to 82 GPa and presents a density much higher than the average density of the surrounding mantle, UO₂ could be a host of U in the deep lower mantle.

Keywords: Heat sources, uranium oxide, X-ray diffraction, crystal structure, deep mantle