American Mineralogist, Volume 93, pages 1043-1050, 2008

Pressure-temperature studies of talc plus water using X-ray diffraction A.E. GLEASON,^{1,*} S.A. PARRY,² A.R. PAWLEY,² R. JEANLOZ,¹ AND S.M. CLARK^{1,2,3}

¹Department of Earth and Planetary Science, University of California, Berkeley, McCone Hall 4767, Berkeley, Calfornia 94720, U.S.A.
²School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
³Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, U.S.A.

ABSTRACT

X-ray diffraction measurements of natural talc plus water at combined pressures and temperatures of 0–15 GPa and 23–400 °C reveal the presence of a structural change that could be interpreted as a new high-pressure phase at 4.0 (\pm 0.5) GPa, and raise the possibility that the newly inferred phase transition takes place in cold subducting slabs as a precursor to appearance of the 10 Å phase of talc.

Keywords: Talc, X-ray diffraction, high pressure, subduction