Lakebogaite, CaNaFe₂³⁺H(UO₂)₂(PO₄)₄(OH)₂(H₂O)₈, a new uranyl phosphate with a unique crystal structure from Victoria, Australia

STUART J. MILLS,^{1,2,3,*} WILLIAM D. BIRCH,² UWE KOLITSCH,⁴ W. GUS MUMME,³ AND IAN E. GREY³

¹School of Earth Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia

²Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria, 3001, Australia

³CSIRO Minerals, Box 312, Clayton South, Victoria, 3169, Australia

⁴Mineralogisch-Petrographische Abt., Naturhistorisches Museum Wien, Burgring 7, A-1010 Wien, Austria

ABSTRACT

Lakebogaite, ideally $CaNaFe_2^{3+}H(UO_2)_2(PO_4)_4(OH)_2(H_2O)_8$, is a new Ca–Na–Fe uranyl phosphate mineral from a quarry in Upper Devonian granite near Lake Boga, northern Victoria, Australia. It is associated with Na-analogue of meurigite (IMA 2007-024), torbernite, and saléeite on a matrix of microcline, albite, smoky quartz, and muscovite. Lakebogaite occurs as bright lemon-yellow transparent prismatic crystals up to 0.4 mm across. The crystals have a vitreous luster and a pale yellow streak. Mohs hardness is about 3. The fracture is even to conchoidal. In transmitted light, the mineral is pale yellow with very weak pleochroism: X = yellow, Y = gravish yellow, Z = gravish yellow: dispersion r > v, strong. Lakebogaite crystals are biaxial (+), with slightly variable refractive indices within the ranges: $n_{\alpha} = 1.650(2) - 1.652(2)$, $n_{\beta} = 1.660(4) - 1.664(3)$, $n_{\gamma} = 1.681(3) - 1.686(2)$, measured using white light, and with $2V_{\text{meas}} = 80-85^{\circ}$ and $2V_{\text{calc}} = 70-74^{\circ}$. Orientation: Y = b; crystals are elongated along [010], resulting in straight extinction. The empirical chemical formula (mean of nine electron microprobe analyses) calculated on the basis of 30 anions is $(Ca_{1,00}Na_{0,80}Sr_{0,10})_{\Sigma_{1,00}}(Fe_{1,85}^{3+}Al_{0,30})_{\Sigma_{1,0}}(UO_2)_{1,80}$ $(PO_4)_{4.07}(OH, H_2O)_{10.12}$. Lakebogaite is monoclinic, space group Cc, a = 19.6441(5), b = 7.0958(2), cc = 18.7029(5) Å, $\beta = 115.692(1)^{\circ}$, V = 2349.3(7) Å³, Z = 4. The seven strongest reflections in the powder X-ray diffraction pattern are $[d_{obs} \text{ in } \text{\AA}(I) (hkl)]$: 6.60 (100) (110), 3.16 (40) (51 $\overline{4}$, 60 $\overline{4}$), 4.07 $(20)(40\overline{4}), 3.80(20)(31\overline{4}), 3.56(20)(020, 312), 3.31(20)(114, 220), 2.797(20)(006)$. The crystal structure was solved from single-crystal X-ray diffraction data and refined to $R_1 = 0.038$ on the basis of 5222 unique reflections with $F > 4\sigma F$. It comprises pairs of edge-shared UO₇ pentagonal bipyramids that are inter-linked via corner-sharing with PO₄ tetrahedra, to form chains parallel to the **c**-axis. Each UO₇ polyhedron also shares one of its edges with another PO₄ tetrahedron. The $(UO_2)_2(PO_4)_4$ chains are cross-linked via corner-sharing between the PO_4 tetrahedra and $Fe^{3+}O_4(OH)_2$ octahedra. The octahedra join together by corner-sharing via OH anions to form chains parallel to \mathbf{b} . The Na⁺ and Ca^{2+} cations, and 4 water molecules occupy eight-sided channels along [010]. The remaining water molecules occupy large ten-sided channels directed along [001] and intersecting the [010] channels. The mineral is named for the nearest township.

Keywords: Lakebogaite, new mineral, uranyl phosphate, Lake Boga quarry, north-western Victoria, Australia, crystal structure, $(UO_2)_2(PO_4)_4$ chains