American Mineralogist, Volume 92, pages 1640-1644, 2007

Single-crystal structure refinement of diaspore at 50 GPa

ALEXANDRA FRIEDRICH,^{1,*} EIKEN HAUSSÜHL,¹ REINHARD BOEHLER,² WOLFGANG MORGENROTH,³ ERICK A. JUAREZ-ARELLANO,¹ AND BJÖRN WINKLER¹

¹Institut für Geowissenschaften, Abt. Kristallographie, J.W. Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany ²Max-Planck-Institut für Chemie, D-55020 Mainz, Germany ³Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark

ABSTRACT

The crystal structure of diaspore, AlO(OH), has been investigated by in situ single-crystal synchrotron X-ray diffraction at ~50 GPa using the diamond-anvil cell technique. Diaspore is found to retain its structure up to 51.5 GPa at room temperature, which is more than 30 GPa above the transition pressure to δ -AlO(OH) found in quenched high-temperature experiments and derived from density functional theory calculations. The compression is anisotropic and largest for the **a** axis. This can be explained by the fact that the structural response to pressure is mainly due to the shortening of the hydrogen bond, which is oriented nearly parallel to the **a** axis. The hydrogen bond becomes significantly more symmetric with pressure up to 50 GPa.

Keywords: Diaspore, high pressure, crystal structure, synchrotron radiation, single crystal