Chemical and structural variations at augite (100) deformation twin boundaries

Shouliang Zhang* and David R. Veblen
Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.

Abstract

It is commonly found that deformation twinning response to plastic deformation results in structural variations at a twin boundary (TB). Chemical heterogeneity at a TB, compared to the host, however, has rarely been reported. An augite sample with a high density of deformation twinning lamellae from Lofoten, Norway was examined using high-resolution transmission electron microscopy (HRTEM) and energy-filtered TEM (EFTEM) techniques to characterize both structural and chemical variations at a TB.

HRTEM experimental results combined with high-resolution image simulation unambiguously resolve the augite deformation TB structure as a half unit cell of orthopyroxene. EFTEM images at TB demonstrate that Ca is depleted, whereas Fe is enriched at this sub-nanometer scale (0.9 nm) interface. In addition, distance-least-squares (DLS) program was applied to verify that the TB structure is geometrically stabilized by substitution of Fe for Ca .

Keywords: Augite, deformation twinning, chemical variation, HRTEM, EFTEM

