Ionoluminescence of leucophanite

HENRIK FRIIS,^{1,2,*} ADRIAN A. FINCH,² PETER D. TOWNSEND,³ DAVID E. HOLE,³ AND HASSANE EL MKAMI⁴

¹Geological Institute, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark ²Centre for Advanced Materials and School of Geography and Geosciences, University of St. Andrews, Irvine Building, St. Andrews, Fife KY16 9AL, U.K.

> ³School of Science and Technology, University of Sussex, Pevensey Building, Falmer, Sussex BN1 9NH, U.K. ⁴School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, U.K.

ABSTRACT

The luminescence of three natural samples of leucophanite (ideally, NaCaBeSi₂O₆F) has been investigated with ion-beam excitation and by electron spin resonance (ESR). A blue luminescence, ascribed to a defect associated with SiO₄ or BeO₄ tetrahedra, and an orange luminescence, ascribed to an Mn²⁺ center, dominates the emission. Further luminescence centers in the investigated wavelength range (200–1100 nm) include those related to Gd³⁺, Dy³⁺, Tb³⁺, Sm³⁺, Eu³⁺, Tm³⁺, and Nd³⁺. In spite of a sheet-like structure, leucophanite is relatively resilient to the ion implantation and β -irradiation, compared with other minerals, but loss of luminescence intensity as a function of implantation show that some permanent defects are formed. No centers change their emission energy as a function of temperature in the investigated interval (40–300 K), but due to crystal-field interaction, a broadening of the Mn²⁺ emission band is observed with increasing temperature, and with low activator concentration. The variation in activator concentration is clearly seen from a pronounced concentration quenching. ESR data (9.7 and 188 GHz) show that Mn is only present in one crystallographic site and that the REE-richest sample has an additional signal with *g* ~ 2.003. No new defects could be seen with ESR in a β -irradiated sample.

Keywords: Ionoluminescence, leucophanite, ESR, REE, Mn2+, lanthanide