American Mineralogist, Volume 91, pages 1922-1926, 2006

Depolymerization effect of water in aluminosilicate glasses: Direct evidence from ¹H-²⁷Al heteronuclear correlation NMR

XIANYU XUE* AND MASAMI KANZAKI

Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori 682-0193 Japan

ABSTRACT

We have applied one-dimensional (1D) ¹H MAS NMR, ²⁷Al \rightarrow ¹H CP MAS NMR, as well as 2D ²⁷Al triple-quantum (3Q) MAS NMR, ²⁷Al \rightarrow ¹H heteronuclear correlation (HETCOR) and high-resolution 3QMAS/HETCOR NMR techniques to KAlSi₃O₈ (Or), NaAlSi₃O₈ (Ab) and NaAlSiO₄ (Ne) glasses containing 0~2 wt% H₂O to shed light on the dissolution mechanisms of water in aluminosilicate melts (glasses). An Al Q³-OH group, characterized by ¹H chemical shifts of 1.3–1.9 ppm, was identified for all hydrous glasses. Its abundance increases with bulk Al/Si ratio. The ²⁷Al chemical shifts (δ_i^{Al}) of this species are 64–68 ppm, larger than those of Al Q⁴ by 3–6 ppm. Despite this difference, it is only through ²⁷Al \rightarrow ¹H HETCOR and 3QMAS/HETCOR, but not ²⁷Al MAS or 3QMAS NMR that the peaks are resolved. This study has demonstrated that depolymerization and formation of AlOH/SiOH is a general water dissolution mechanism for polymerized aluminosilicate melts (glasses), and HETCOR NMR experiments involving ¹H are the key to its revelation.

Keywords: NMR, water, aluminosilicate glass, heteronuclear correlation, ¹H, ²⁷Al, depolymerization