Dehydroxylation, proton migration, and structural changes in heated talc: An infrared spectroscopic study

MING ZHANG,^{1,*} QUN HUI,¹ XIAO-JIE LOU,¹ SIMON A.T. REDFERN,¹ EKHARD K.H. SALJE,¹ AND SERENA C. TARANTINO²

¹Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom ²Dipartimento di Scienze della Terra, Università di Pavia, via Ferrata 1, I-27100 Pavia, Italy

ABSTRACT

The high-temperature dehydroxylation and structural change of talc, $Mg_3(Si_2O_5)_2(OH)_2$, has been investigated in detail using infrared (IR) spectroscopy. The data (in the region of 20-12000 cm⁻¹) on quenched samples show that absorptions from structurally incorporated OH and OD, as well as NH₄like species, have similar temperature dependences in dehydroxylation. The OH species exhibit weak variation in frequency on heating, which is inconsistent with thermally induced weakening of O-H bonds. Dehydroxylation in talc is a complex process that involves proton migrations and formation of new OH species. Additional fundamental OH bands near 3665 and 3745 cm⁻¹ became detectable near 900 °C. On further heating the former disappear near 1200 °C, whereas the latter became undetectable near 1350 °C. The occurrence of CO₂ is observed in samples quenched between 600 and 1250 °C. The phonon spectrum (20–1500 cm⁻¹) of the dehydroxylate (obtained by annealing the sample at 1000 °C) gives features significantly different from that of talc, indicating the loss of the original layer structure. The IR data imply that the talc dehydroxylate consists of disordered SiO₂ and enstatite (MgSiO₃). Although MgSiO₃ exists dominantly in the form of orthoenstatite, the characteristic bands of clinoenstatite phase are found to coexist in the samples treated at 1000 °C. The IR data from in situ measurements show that protons become mobile at temperatures below the dehydroxylation and an extra OH species near 3500 cm⁻¹ develops on heating. This new species is not quenchable, and it decreases intensity on cooling and disappears at room temperature. The in situ results also indicate external carbon-related substances can diffuse into talc during dehydroxylation.

Keywords: Infrared spectroscopy, talc, dehydroxylation, OH, OD, NH₄, CO₂, enstatite