American Mineralogist, Volume 91, pages 953-956, 2006

LETTER

The oxidation state of vanadium in titanomagnetite from layered basic intrusions

ETIENNE BALAN,^{1,2,*} JOHAN P.R. DE VILLIERS,³ SIGRID GRIET EECKHOUT,⁴ PIETER GLATZEL,⁴ MICHAEL J. TOPLIS,⁵ EMMANUEL FRITSCH,^{1,2} THIERRY ALLARD,² LAURENCE GALOISY,² AND GEORGES CALAS²

¹UR T058, Institut de Recherche pour le Développement (IRD), 213 rue La Fayette, 75480, Paris cedex 10, France ²Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), UMR CNRS 7590, Universités Paris VI et VII, IPGP, 4 Place Jussieu, 75252 Paris Cedex 05, France

³Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002, South Africa ⁴European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble, France

⁵Laboratoire Dynamique Terrestre et Planétaire UMR CNRS 5562, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin 31400 Toulouse, France

ABSTRACT

The redox conditions prevailing during the formation of vanadiferous titanomagnetites from three layered intrusions (Bushveld; Koillismaa; Skaergaard) have been estimated from the valence state of vanadium using synchrotron X-ray absorption near edge structure spectroscopy (XANES). Using a high energy-resolution X-ray emission spectrometer, we show that vanadium occurs mostly as V^{3+} , with minor V^{4+} . The most concentrated samples (up to 2.4 wt% V_2O_3) contain approximately 10% of vanadium as V^{4+} . Both V^{3+} and V^{4+} occur in the octahedral site of the spinel structure. Considering the low magnetite/melt V^{4+} partition coefficients, this suggests that vanadium ores crystallized under specific oxidizing conditions.

Keywords: Trace elements, XAS (XANES), igneous petrology, new technique