American Mineralogist, Volume 91, pages 1342-1345, 2006

Generation of pressures to ~60 GPa in Kawai-type apparatus and stability of MnGeO₃ perovskite at high pressure and high temperature

DAISUKE YAMAZAKI,^{1,*} TORU SHINMEI,² TORU INOUE,² TETSUO IRIFUNE,² AKIFUMI NOZAWA,³ AND KENICHI FUNAKOSHI³

¹Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori, Japan ²Geodynamics Research Center, Matsuyama, Ehime, Japan ³Japan Synchrotron Radiation Research Institute, Mikazuki, Hyogo, Japan

ABSTRACT

To obtain higher pressures in a Kawai-type apparatus, we explored and tested high-pressure cell assemblies suitable for experiments using sintered diamond (SD) anvils. As a result, we succeeded in generating pressures exceeding 55 GPa at temperatures of ~1000 °C in a Kawai-type apparatus (SPEED Mk-II) at SPring-8. Using the optimized cell assembly, we examined the stability field of MnGeO₃ perovskite, an analog of MgSiO₃ perovskite, which was recently found to transform to a new high-pressure form under the *P*-*T* conditions near the core-mantle boundary. From our in situ X-ray observations, MnGeO₃ perovskite was found to be stable at pressures up to 56–57 GPa at temperatures of 800–1050 °C.

Keywords: Pressure generation, high pressure and temperature, manganese germanate, perovskite