Single-crystal X-ray diffraction and temperature dependent ⁵⁷Fe Mössbauer spectroscopy on the hedenbergite-aegirine (Ca,Na)(Fe²⁺,Fe³⁺)Si₂O₆ solid solution

GÜNTHER J. REDHAMMER,^{1,2,*} GEORG AMTHAUER,¹ GEORG ROTH,² GEROLD TIPPELT,¹ AND WERNER LOTTERMOSER¹

¹Department of Material Science, Division of Mineralogy, University Salzburg, Hellbrunnerstr. 34, A-5020, Salzburg, Austria ²Institute of Crystallography, University of Technology, Rheinisch—Westfälische Technische Hochschule Aachen, Jägerstrasse 17/19, D-52056, Aachen, Germany

ABSTRACT

Synthetic samples with different chemical compositions along the hedenbergite-aegirine $(CaFe^{2+}Si_2O_6-NaFe^{3+}Si_2O_6)$ solid-solution series have been investigated by single-crystal X-ray diffraction and ⁵⁷Fe Mössbauer spectroscopy. All compounds show C2/c symmetry, both at 298 K and at low temperature (100 K). The structural changes within the hedenbergite-aegirine series are dominated by the M1 site while the M2 site plays a minor role. Replacement of Fe²⁺ by Fe³⁺ increases the polyhedral distortion of the M1 site and causes an increased repulsion between neighboring M1 sites. The changes in M1-site geometry also induce distinct alterations within the kinking state of the tetrahedral chains, but the changes in tetrahedral bond lengths and angles are small. In addition to the single-crystal X-ray diffraction experiments, a large number of synthetic samples were investigated by ⁵⁷Fe Mössbauer spectroscopy at 298 K and, for three selected compositions, between 80 and 700 K. Here, substantial line broadening of the Fe²⁺ resonance absorption was observed as an aegirine component is substituted. Two different groups of local distortion environments were observed for Fe2+ within the solid-solution series, which change relative proportions and numeric value of the quadrupole splitting as a function of chemistry and temperature. This line broadening cannot be ascribed to discrete next-nearest-neighbor (NNN) configurations of Ca and Na as has been done in the literature. Above \sim 250 K, additional resonance absorption appears in the spectra of samples with aegirine components between 20 and 75 mol%. This absorption gains intensity with increasing temperature, while the ⁵⁷Fe hyperfine parameters approach values intermediate between Fe^{2+} and Fe^{3+} . This effect is ascribed to fast electron delocalization between Fe²⁺ and Fe³⁺ at elevated temperature.

Keywords: Synthesis, crystal structure, Mössbauer spectroscopy, hedenbergite-aegirine series, clinopyroxenes