Coexisting retrograde jadeite and omphacite in a jadeite-bearing lawsonite eclogite from the Motagua Fault Zone, Guatemala

TATSUKI TSUJIMORI,* JUHN G. LIOU, AND ROBERT G. COLEMAN

Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A.

ABSTRACT

Coexisting jadeite and omphacite were found as retrograde minerals in a jadeite-bearing lawsonite-eclogite from the Motagua Fault Zone, Guatemala. The lawsonite-eclogite is characterized by the occurrence of garnet porphyroblasts up to 2.5 cm in size, and the eclogite-facies parageneses, almandine-rich garnet + impure jadeite + lawsonite + rutile + quartz; garnet contains inclusions of impure jadeite, phengite, ferroglaucophane, chlorite, lawsonite, rutile, ilmenite, and quartz. Textural relations and parageneses and compositions of minerals indicate that the lawsonite-eclogite experienced two stages of metamorphism: prograde eclogite-facies stage (M_1) and retrograde stage (M_2) . The impure jadeite (Jd-I) of the M₁ eclogite-facies occurs in both the matrix and as inclusions in garnet, and contains considerable amounts of augite and aegirine components (Jd₆₁₋₇₅Aug₁₆₋₂₄Ae₀₋₁₈). It is partly recrystallized to retrograde M_2 jadeite (Jd-II) (Jd_{74.87}Aug₉₋₁₆Ae₀₋₁₁) and omphacite (Jd_{42.50}Aug₃₆₋₄₆Ae₇₋₁₆); some of these two sodic pyroxenes may have crystallized from fluids. Both M₂ jadeite and omphacite show textural equilibrium and are believed to have grown concurrently. Based on the observed compositions and the phase relations of sodic pyroxenes from Carpenter (1980), the M_1 impure jadeite (Jd-I) may have had a disordered C2/c symmetry at T = ca. 450 °C and P = ca. 1.8-2.4 GPa, and was subsequently crystallized into jadeite (Jd-II) plus ordered P2/n omphacite during retrogression with infiltration of fluids at T < ca. 300 °C and P = ca. 0.7 GPa (M₂). The extreme low-T conditions during retrogression may have prevented reaction between eclogitic jadeite and adjacent minerals. Instead, eclogitic impure jadeite (plus fluid) has recrystallized into the retrograde jadeite + omphacite pair with a wide compositional gap.