Halite-sylvite thermoelasticity ## DAVID WALKER,^{1,*} PRAMOD K. VERMA,² LACHLAN M.D. CRANSWICK,^{3,†} RAYMOND L. JONES,⁴ SIMON M. CLARK,^{4,5} AND STEPHAN BUHRE⁶ ¹Lamont-Doherty Earth Observatory and Department of Earth and Environmental Sciences, Columbia University, Palisades, New York 10964, U.S.A. ²Department of Geology, Chhatra Marg, University of Delhi, Delhi-110007, India ³CCP14—School of Crystallography, Birkbeck College, Malet Street, Bloomsbury, WC1E 7HX, London, U.K. ⁴CLRC, MSL, Daresbury Laboratory, Warrington WA4 4AD, U.K. ⁵Advanced Light Source, LBNL, MS 80-101, 1 Cyclotron Road, Berkeley, California 94720, U.S.A. ⁶Institut fuer Mineralogie, J.W. Goethe-Universitaet, Senckenberganlage 28, 60054 Frankfurt, Germany ## ABSTRACT Unit-cell volumes of four single-phase intermediate halite-sylvite solid solutions have been measured to pressures and temperatures of ~28 kbar and ~700 °C. Equation-of-state fitting of the data yields thermal expansion and compressibility as a function of composition across the chloride series. The variation of the product $\alpha_0 \cdot K_0$ is linear (ideal) in composition between the accepted values for halite and sylvite. Taken separately, the individual values of α_0 and K_0 are not linear in composition. α_0 shows a maximum near the consolute composition ($X_{\text{NaCl}} = 0.64$) that exceeds the value for either end-member. There is a corresponding minimum in K_0 . The fact that the $\alpha_0 \cdot K_0$ product is variable (and incidentally so well behaved as to be linear across the composition series) reinforces the significance of the complementary maxima and minima in α_0 and K_0 (significantly, near the consolute composition). These extrema in α_0 and K_0 provide an example of intermediate properties that do not follow simply from values for the end-members. Cell volumes across this series show small, well-behaved positive excesses, consistent with K-Na substitution causing defects through lattice mismatches. Barrett and Wallace (1954) showed maximum defect concentrations in the consolute region. Defect-riddled, weakened structures in the consolute region are more easily compressed or more easily thermally expanded, providing an explanation for our observed α_0 and K_0 variations. These compliant, loosened lattices should resist diffusive transfer less than non-defective crystals and, hence, might be expected to show higher diffusivities. Tracer diffusion rates are predicted to peak across the consolute region as exchange diffusion rates drop to zero.