On the thermochemistry of the solid solution between jarosite and its chromate analog

CHRISTOPHE DROUET,¹ DIRK BARON,² AND ALEXANDRA NAVROTSKY^{1,*}

¹Thermochemistry Facility, University of California at Davis, One Shields Avenue, Davis, California 95616, U.S.A. ²Department of Physics and Geology, California State University, Bakersfield, California 93311, U.S.A.

ABSTRACT

Minerals of the jarosite group can be a significant environmental sink for hexavalent Cr by substitution of chromate for sulfate. The thermochemistry of the synthetic solid solution between jarosite KFe₃(SO₄)₂(OH)₆ and its chromate analog KFe₃(CrO₄)₂(OH)₆ was investigated by high-temperature oxide-melt solution calorimetry. The enthalpies of formation (ΔH_t^0) of the latter, as well as of five intermediate compositions in the series KFe₃(S_{1-z}Cr_zO₄)₂(OH)₆, were determined, where *z* corresponds to the Cr content. The variation of ΔH_t^0 with Cr content deviates from ideality, and negative enthalpies of mixing between jarosite and its chromate analog are observed, suggesting some ordering of the sulfate/chromate groups in the solid solution. The measured enthalpy of formation from the elements of the end-member KFe₃(CrO₄)₂(OH)₆ is $\Delta H_t^0 = -3762.5 \pm 8.0$ kJ/mol. In view of this work, and considering literature data, $\Delta G_t^0 = -3305.5 \pm 3.4$ kJ/mol, $\Delta S_t^0 = -1533.6 \pm 29.2$ J/(mol·K), and $S^0 = 487.7 \pm 29.2$ J/(mol·K) are recommended for KFe₃(CrO₄)₂(OH)₆.