Thermal equation of state of omphacite

YU NISHIHARA,^{1,*} EIICHI TAKAHASHI,¹ KYOKO MATSUKAGE,² AND TAKUMI KIKEGAWA³

¹Magma Factory, Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152–8551, Japan ²Department of Environmental Sciences, Ibaraki University, Bunkyo, Mito, Ibaraki 310–8512, Japan ³High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305–0801, Japan

ABSTRACT

In-situ synchrotron X-ray diffraction experiments were conducted using the MAX-III multianvil press of KEK on an omphacite (Di₆₃Jd₃₇), for which Di = Ca(Mg,Fe)Si₂O₆ and Jd = NaAlSi₂O₆. Pressure-volume-temperature data were collected at up to 10 GPa and 1000 K. A fit to the hightemperature Birch-Murnaghan equation of state yielded an isothermal bulk modulus $K_{T0} = 126(1)$ GPa, an assumed pressure derivative of the bulk modulus $K_T = 4.0$, a temperature derivative of the bulk modulus ($\partial K_T / \partial T$)_{*p*} = -0.015(4) GPa/K, and a volumetric thermal expansivity $\alpha = 2.2(1) \times 10^{-5} \text{ K}^{-1}$, when the equation of state of NaCl by Brown (1999) is adopted for the pressure scale. The derived K_{T0} value is consistent with the linear interpolations from K_{T0} values for diopside and jadeite in the literature.