X-ray spectroscopic investigations of fluids in the hydrothermal diamond anvil cell: The hydration structure of aqueous La³⁺ up to 300 °C and 1600 bars

ALAN J. ANDERSON,^{1,*} SUMEDHA JAYANETTI,^{2,†} ROBERT A. MAYANOVIC,² WILLIAM A. BASSETT,³ AND I-MING CHOU⁴

¹Department of Geology, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada ²Department of Physics and Astronomy, Southwest Missouri State University, Springfield, Missouri 65804, U.S.A. ³Department of Geological Sciences, Cornell University, Ithaca, New York 14853, U.S.A. ⁴MS 954, U.S. Geological Survey, Reston, Virginia 20192, U.S.A.

ABSTRACT

The first direct measurements are reported for the structure of the hydrated La³⁺ ion in an aqueous solution (containing 0.007 *m* La) over a range of temperatures from 25 to 300 °C and pressures up to 1600 bars. The radial distribution of atoms around the La³⁺ ion was measured using the X-ray absorption fine structure (XAFS) technique. La L₃-edge spectra were collected in the fluorescence mode from nitrate solutions in a modified hydrothermal diamond anvil cell using the PNC-CAT X-ray microprobe at the Advanced Photon Source, Argonne National Laboratory. Analysis of the XAFS spectra collected at all temperatures indicates that each La³⁺ ion has a hydration number of nine and that the solvating waters surround the ion in a tricapped trigonal prismatic arrangement. As temperature is increased from 25 to 300 °C, the bond distance between the equatorial-plane O atoms and the La³⁺ ion increases from 2.59 ± 0.02 to 2.79 ± 0.04 Å, whereas the bond distance between La³⁺ and the O atoms at the ends of the prism decrease to 2.48 ± 0.03 Å. This study also demonstrates the unique capability of the modified hydrothermal diamond anvil cell for in situ low energy X-ray spectroscopic analysis of elements in dilute aqueous solutions at elevated temperatures and pressures.