Crystal structure of novel high-pressure perovskite K_{2/3}Th_{1/3}TiO₃, a possible host for Th in the upper mantle

ANTON R. CHAKHMOURADIAN* AND ROGER H. MITCHELL

Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada

ABSTRACT

The high-pressure perovskite $K_{2/3}Th_{1/3}TiO_3$ was synthesized at P = 6 GPa and T = 1200 °C. This compound does not form at ambient pressures, as both solid-state reaction and synthesis from the melt yield a mixture of thorianite (ThO₂) and jeppeite ($K_2Ti_6O_{13}$). $K_{2/3}Th_{1/3}TiO_3$ is a partially ordered derivative of the ideal perovskite structure, which crystallizes with tetragonal symmetry, in space group *P4/mmm*, a = 3.9007(2), c = 7.8099(7) Å, V = 118.83(2) Å³, Z = 2. The structure of this compound was refined by the Rietveld method from the X-ray diffraction powder data. The degree of disorder calculated from the refined cation occupancies of the 1a and 1b sites is 58%. The K¹⁺ cations preferentially enter the 1a site, whereas most Th⁴⁺ is accommodated in the comparatively smaller 1b site (polyhedral volumes are 53 and 46 Å³, respectively). In response to this two-dimensional (planar) ordering, the Ti⁴⁺ cations are displaced by about 0.1 Å toward the planes populated by the lower-charged cations. $K_{2/3}Th_{1/3}TiO_3$ and related structures may be a viable repository for Th in Ti-rich alkali metasomatites in the lithospheric upper mantle.