Crystal chemical variations in Li- and Fe-rich micas from Pikes Peak batholith (central Colorado)

MARIA FRANCA BRIGATTI,^{*,1} CRISTINA LUGLI,¹ LUCIANO POPPI,¹ EUGENE E. FOORD,[†] AND DANIEL E. KILE²

¹Department of Earth Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy ²United States Geological Survey, Denver, Colorado 80225, U.S.A.

ABSTRACT

The crystal structure and M-site populations of a series of micas-1*M* from miarolitic pegmatites that formed within host granitic rocks of the Precambrian, anorogenic Pikes Peak batholith, central Colorado, were determined by single-crystal X-ray diffraction data. Crystals fall in the polylithionitesiderophyllite-annite field, being $0 \le \text{Li} \le 2.82$, $0.90 \le \text{Fe}_{\text{total}} \le 5.00$, $0.26 \le {}^{[6]}\text{Al} \le 2.23$ apfu. Ordering of trivalent cations (mainly Al³⁺) is revealed in a cis-octahedral site (M2 or M3), which leads to a lowering of the layer symmetry from C12/m(1) (siderophyllite and annite crystals) to C12(1) diperiodic group (lithian siderophyllite and ferroan polylithionite crystals). On the basis of mean bond length, the ordering scheme of octahedral cations is mostly meso-octahedral, whereas the mean electron count at each M site suggests both meso- and hetero-octahedral ordering, the calculated mean atomic numbers being M1 = M3 \neq M2, M2 = M3 \neq M1 and M1 \neq M2 \neq M3. As the siderophyllite content increases, so do the *a*, *b*, and c unit-cell parameters, as well as the refractive indices, primarily n_{β} . The tetrahedral rotation angle, α , is generally small ($1.51 \le \alpha \le 5.04^{\circ}$) and roughly increases with polylithionite content, whereas the basal oxygen out-of-plane tilting, Δz , is sensitive both to octahedral composition and degree of order ($0.0 \le \Delta z \le 0.009$ Å for siderophyllite and annite, $0.058 \le \Delta z \le 0.144$ Å for lithian siderophyllite and ferroan polylithionite crystals).