# Crystal chemical variations in Li- and Fe-rich micas from Pikes Peak batholith (central Colorado) 

Maria Franca Brigatti,*, ${ }^{1}$ Cristina Lugli, ${ }^{1}$ Luciano Poppi, ${ }^{1}$ Eugene E. Foord, $\dagger$ and Daniel E. Kile ${ }^{2}$<br>${ }^{1}$ Department of Earth Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy<br>${ }^{2}$ United States Geological Survey, Denver, Colorado 80225, U.S.A.


#### Abstract

The crystal structure and M-site populations of a series of micas- $1 M$ from miarolitic pegmatites that formed within host granitic rocks of the Precambrian, anorogenic Pikes Peak batholith, central Colorado, were determined by single-crystal X-ray diffraction data. Crystals fall in the polylithionite-siderophyllite-annite field, being $0 \leq \mathrm{Li} \leq 2.82,0.90 \leq \mathrm{Fe}_{\text {total }} \leq 5.00,0.26 \leq{ }^{[6]} \mathrm{Al} \leq 2.23$ apfu. Ordering of trivalent cations (mainly $\mathrm{Al}^{3+}$ ) is revealed in a cis-octahedral site (M2 or M3), which leads to a lowering of the layer symmetry from $C 12 / m(1)$ (siderophyllite and annite crystals) to $C 12(1)$ diperiodic group (lithian siderophyllite and ferroan polylithionite crystals). On the basis of mean bond length, the ordering scheme of octahedral cations is mostly meso-octahedral, whereas the mean electron count at each M site suggests both meso- and hetero-octahedral ordering, the calculated mean atomic numbers being $\mathrm{M} 1=\mathrm{M} 3 \neq \mathrm{M} 2, \mathrm{M} 2=\mathrm{M} 3 \neq \mathrm{M} 1$ and $\mathrm{M} 1 \neq \mathrm{M} 2 \neq \mathrm{M} 3$. As the siderophyllite content increases, so do the $a, b$, and c unit-cell parameters, as well as the refractive indices, primarily $n_{\beta}$. The tetrahedral rotation angle, $\alpha$, is generally small ( $1.51 \leq \alpha \leq 5.04^{\circ}$ ) and roughly increases with polylithionite content, whereas the basal oxygen out-of-plane tilting, $\Delta \mathrm{z}$, is sensitive both to octahedral composition and degree of order $(0.0 \leq \Delta \mathrm{z} \leq 0.009 \AA$ for siderophyllite and annite, $0.058 \leq \Delta \mathrm{z} \leq$ $0.144 \AA$ for lithian siderophyllite and ferroan polylithionite crystals).


