Diffusion of C and O in calcite at 100 MPa

T.C. LABOTKA,^{1,*} D.R. COLE,² AND L.R. RICIPUTI²

¹Department of Geological Sciences, University of Tennessee, Knoxville, Tennessee 37996-1410, U.S.A. ²Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A.

ABSTRACT

The diffusivities of C and O in calcite were determined in a pure CO₂ atmosphere at 100 MPa and temperatures ranging from 600 to 800 °C. The calcite crystals were preannealed and H₂O was excluded from the system to determine the self-diffusion coefficients. The CO₂ consisted of 99% ¹³C and 90% ¹⁸O. After heating for 7–147 d, diffusion profiles were measured with the use of secondary ion mass spectrometry. The results indicate that the diffusivity of C is $D_{\rm C} = 7.77 \times 10^{-9} \exp(-166 \pm$ 16 kJ/mol/R*T*) cm²/s and of O is $D_{\rm O} = 7.5 \times 10^{-3} \exp(-242 \pm 39 \text{ kJ/mol/R$ *T* $}) cm²/s. In comparison$ with other determinations of diffusivities in calcite, diffusion of O under the experimental conditions is consistent with vacancy migration in the intrinsic region, and diffusion of C seems to occurby diffusion of carbonate anions. Increased pressure appears to reduce the activation energy and the $value of <math>D_0$, and the presence of H₂O greatly increases the diffusivity of O without appreciably changing the activation energy. Closure temperatures calculated for isotopic exchange by diffusion predict that C isotope compositions of calcite are preserved during cooling in most geologic environments, but that O isotope compositions in H₂O-rich environments are preserved only in rapidly cooling environments, such as contact metamorphic aureoles.