The MgTiO₃-FeTiO₃ join at high pressure and temperature

JENNIFER A. LINTON,^{1,*} YINGWEI FEI,² AND ALEXANDRA NAVROTSKY³

¹Department of Geosciences and Center for High Pressure Research, Princeton University, Princeton, New Jersey 80544, U.S.A. ²Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road, N.W., Washington, D.C. 20015, U.S.A.

³Thermochemistry Facility and Center for High Pressure Research, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616, U.S.A.

ABSTRACT

The phase relations at high pressure and high temperature for the FeTiO₃-MgTiO₃ join were determined using several different experimental methods. Through a series of multi-anvil experiments, a phase boundary with a negative slope was observed between MgTiO₃I (ilmenite structure) and a high pressure phase with the MgTiO₃ II (lithium niobate structure) after quenching. The enthalpy of transformation of MgTiO₃ I to MgTiO₃ II was determined through transposed-temperature-drop calorimetry to be 28.78 ± 1.45 kJ/mol. The enthalpy of transformation from ilmenite to lithium niobate structure was also determined for three intermediate compositions on the FeTiO₃-MgTiO₃ join, Fe_{0.2}Mg_{0.8}TiO₃, Fe_{0.5}Mg_{0.5}TiO₃ and Fe_{0.8}Mg_{0.2}TiO₃, and confirmed for FeTiO₃, and was found to be a linear function of composition. These experiments represent one of the first successful calorimetric measurements on small samples (1 to 3 mg) synthesized at high pressures (15 to 21 GPa). X-ray analysis during compression of Fe_{0.5}Mg_{0.5}TiO₃ II in a diamond cell confirmed a room temperature transition at 28 GPa to Fe_{0.5}Mg_{0.5}TiO₃ III (a GdFeO₃-type perovskite structure), similar to the transitions previously observed in FeTiO₃ and MnTiO₃. The Fe_{0.5}Mg_{0.5}TiO₃ sample was heated to 802 °C at 21 GPa, and it was observed that the stable high temperature, high pressure phase is perovskite, $Fe_{0.5}Mg_{0.5}TiO_3$ III. The above data combined confirm the stability of a continuous perovskite solid solution at high pressure and temperature for the FeTiO₃-MgTiO₃ join.