Hydrogen in diopside: Diffusion, kinetics of extraction-incorporation, and solubility

SARAH HERCULE AND JANNICK INGRIN*

Laboratoire des Mécanismes de Transferts en Géologie, CNRS UMR 5563, Equipe de Minéralogie, 39 Allées Jules Guesde, 31000 Toulouse, France

ABSTRACT

The kinetic of H extraction-incorporation in diopside single-crystals $(Ca_{0.97}Na_{0.02}Cr_{0.01}Mg_{0.97})$ $Fe_{0.036}Si_{1.99}O_6$ deduced by monitoring OH infrared absorption bands for samples heated from 973 to 1273 K at 0.1 atm and 1 atm of pH₂, is independent of crystallographic orientation, P_{02} , and pH₂. The diffusion law is $D = D_0 \exp[-(126 \pm 24) \text{ kJ/mol/RT}]$, with log D_0 (in m²/s) = -6.7 \pm 1.1. Hydrogen self-diffusion obtained from H-D exchange in the same diopside samples over 873-1173 K, and along directions [001] and [100]* at 1 atm total pressure is two orders of magnitude faster than H uptake and follows the diffusion law $D_{\rm H} = D_0 \exp[-(149 \pm 16) \text{ kJ/mol/RT}]$, with log D_0 (in m²/s) = -3.4 ± 0.8. Self-diffusion along [010] follows the diffusion law $D_{\rm H} = D_0 \exp[-(143 \pm 33) \text{ kJ/mol/RT}]$, with log D_0 (in m²/s) = -5.0 ± 1.7 and is one order of magnitude faster than H uptake. The kinetics of extraction incorporation of H in this diopside follows the reaction $Fe^{3+} + O^{2-} + 1/2H_2$ (g) = $Fe^{2+} + OH^{-}$ and are not rate limited by the mobility of protons but more probably by the mobility of electron holes connected with the Fe oxidation-reduction process. The results suggest that the kinetics of H uptake in clinopyroxenes will increase with increasing Fe content until it is rate controlled by the kinetics of H self-diffusion. We predict a rate for H exchange in diopside appropriate to the upper mantle almost as fast as H exchange in olivine. The insensitivity of H solubility on temperature and $P_{\rm O2}$ for samples recovered from low-temperature conditions (below 1273 K) and/or rapidly quenched samples let us suggest the use of OH concentration measurements in diopside as a potential pH_2 sensor.