"Cs-tetra-ferri-annite:" High-pressure and high-temperature behavior of a potential nuclear waste disposal phase

PAOLA COMODI, PIER FRANCESCO ZANAZZI,¹ ZDENĚK WEISS,² MILAN RIEDER,^{3,*} AND MILAN DRÁBEK⁴

 ¹Dipartimento di Scienze della Terra, Università di Perugia, Piazza Università, I-06100 Perugia, Italy
²Central Analytical Laboratory, Technical University Ostrava, CZ-70833 Ostrava-Poruba, Czech Republic
³Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Albertov 6, CZ-12843 Praha 2, Czech Republic
⁴Czech Geological Survey, Geologická 6, CZ-15200 Praha 6, Czech Republic

ABSTRACT

Structure deformations induced by pressure and temperature in synthetic "Cs-tetra-ferriannite" 1M [Cs_{1.78}(Fe²⁺_{5.93}Fe³⁺_{0.07})(Si_{6.15} Fe³⁺_{1.80}Al_{0.05})O₂₀(OH)₄], space group *C2/m*, were analyzed to investigate the capability of the mica structure to store the radiogenic isotopes ¹³⁵Cs and ¹³⁷Cs. "Cs-tetra-ferri-annite" is not a mineral name, but for the sake of brevity is used here to designate a synthetic analog of the mineral tetra-ferri-annite. The bulk modulus and its pressure derivative determined by fitting the unit-cell volumes between 0 and 47 kbar to a third-order Birch-Murnaghan equation of state are K₀ = 257(8) kbar and K₀' = 21(1), respectively. Between 23 °C and 582 °C, the *a* and *b* lattice parameters remain essentially unchanged, but the thermal expansion coefficient of the **c** axis is $\alpha_c = 3.12(9)$ × 10⁻⁵ °C⁻¹. High pressure (*P*) and high temperature (*T*) produce limited internal strain in the structure. The tetrahedral rotation angle, α , is very small and does not change significantly throughout the *P* and *T* range investigated. Above 450 °C in air, "Cs-tetraferri-annite" underwent an oxidation of octahedral iron in the M2*cis* site, balanced by the loss of H and shown by a decrease of the unit-cell volume.

Independent isobaric data on thermal expansion and isothermal compressibility data define the "geometric" equation of state for "Cs-tetra-ferri-annite": $V/V_0 = 1 + 3.0(1)$ $10^{-5} T - 2.68(9) 10^{-3} P + 2.0(2) \times 10^{-5} P^2$ where *T* is in degrees Celsius, *P* is in kilobars. The α/β ratio of about 12 bar/°C indicate that the cell volume of "Cs-tetra-ferri-annite" remains unchanged under geothermal gradients of ~23 °C/km. On the whole, the data confirm that the structure of "Cs-tetra-ferri-annite" may be a suitable candidate for the storage of large ions, such as Cs in the interlayer and should be considered as a potential Synroc component.