Crystal chemistry of high-pressure BaSi₄O₉ in the trigonal (P3) barium tetragermanate structure

R.M. HAZEN,^{1,*} H. YANG,¹L.W. FINGER,¹ AND B.A. FURSENKO²

¹Geophysical Laboratory and Center for High-Pressure Research, 5251 Broad Branch Road, N.W., Washington, D.C. 20015-1305 ²Institute of Mineralogy and Petrology, Academy of Sciences, Universitetskii prosp., 3, Novosibirisk, 630090, Russia

ABSTRACT

Crystals of BaSi₄O₉ synthesized at 4 GPa and 1000 °C were determined to be isostructural with barium tetragermanate [trigonal, space group P3, a =11.2469(11) and c = 4.4851(6) Å, V = 491.3(1) Å³]. The structure (R = 2.4%) features a corner-linked framework of three-member silicate tetrahedral rings, which are cross-linked by isolated silicate octahedra. Ba cations occupy tenfold-coordinated sites in channels defined by the silicate framework. This structure is 4.2% denser than the topologically similar benitoite form of high-pressure BaSi₄O₉, which was produced by grinding the barium tetragermanate-type crystals described in this report.