Boralsilite (Al₁₆B₆Si₂O₃₇): A new mineral related to sillimanite from pegmatites in granulite-facies rocks

Edward S. Grew,^{1,*} James J. McGee,² Martin G. Yates,¹ Donald R. Peacor,³ Roland C. Rouse,³ Joep P.P. Huijsmans,⁴ Charles K. Shearer,⁵ Michael Wiedenbeck,⁶ Douglas E. Thost,⁷ and Shu-Chun Su⁸

¹Department of Geological Sciences, University of Maine, Orono, Maine 04469, U.S.A.

²Department of Geological Sciences, University of South Carolina, Columbia, South Carolina 29208, U.S.A.

³Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

⁴Netherlands Energy Research Foundation, P.O. Box 1, NL 1755 ZG Petten, The Netherlands

⁵Institute of Meteoritics, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A.

⁶Advanced Materials Laboratory, University of New Mexico, Albuquerque, New Mexico 87106, U.S.A.

⁷Australian Geological Survey Organization, G.P.O. Box 378, Canberra A.C.T., Australia ⁸Hercules Research Center, 500 Hercules Road, Wilmington, Delaware 19808, U.S.A.

Abstract

Boralsilite, the first natural anhydrous Al-B-silicate, is a high-temperature phase in pegmatites cutting granulite-facies metapelitic rocks at Larsemann Hills, Prydz Bay, east Antarctica (type locality) and Almgjotheii in the contact aureole of the Rogaland Intrusive Complex, southwestern Norway. Stable assemblages include: (1) quartz-potassium feldspar-boralsilite-schorl/dravite (Larsemann Hills); (2) potassium feldspar-plagioclase(An₂)boralsilite-werdingite-dumortierite-grandidierite (Almgjotheii); (3) quartz-potassium feldspar-boral silite-dumortierite-and alusite \pm sillimanite (Almgjotheii). Boral silite is estimated to have formed between 600 and 750 °C and 3–5 kbar at conditions where $P_{\rm H,O} < P_{\rm tot}$. The name is from the composition, *bor*on, *aluminum*, and *silicon*. Representative electron and ion microprobe (SIMS) analyses of Larsemann Hills are: SiO₂ 10.05 [12.67]; Al₂O₃ 71.23 [69.15]; FeO 0.48 [1.10]; MgO below detection [0.23]; BeO 0.004 [0.094]; B₂O₃ 19.63 [18.11] wt%, totals 101.39 [101.35] wt% where the numbers in brackets were determined from Almgjotheii material. However, the SIMS B₂O₃ values appear to be systematically too high; boron contents calculated assuming B + Si = 8 and O = 37 atoms per formula unit (apfu) yield B_2O_3 18.53 wt% corresponding to $Fe_{0.08}Al_{15.98}B_{6.09}Si_{1.91}O_{37}$ ideally $Al_{16}B_6Si_2O_{37}$ for Larsemann Hills. The analogous composition of $Mg_{0.07}Fe_{0.18}$ -Al_{15.66}Be_{0.04}B_{5.565}Si_{2.435}O₃₇ for Almgjotheii appears to result from solid solution of boralsilite with sillimanite (or $Al_sB_2Si_2O_{10}$) and subordinate werdingite. Boralsilite forms prisms up to 2 mm long $\|b\|$ and 0.25 mm across and is commonly euhedral in cross section. It is colorless and prismatic cleavage is fair. Optically, it is biaxial (+): at $\lambda = 589$ nm, the Larsemann Hills material has $\alpha = 1.629(1)$, $\beta = 1.640(1)$, $\gamma = 1.654(1)$, $2V_{\text{meas}} = 81.8$ (6), r > v extremely weak, and $\gamma \parallel b$. It is monoclinic, space group C2/m with lattice parameters for Larsemann Hills of a = 14.767(1), b = 5.574(1), c = 15.079(1) Å, $\beta =$ $91.96(1)^{\circ}, V = 1240.4$ (2) Å³, Z = 2, and $D_{calc} = 3.07$ g/cm³.