Rossmanite, \Box (LiAl₂)Al₆(Si₆O₁₈)(BO₃)₃(OH)₄, a new alkali-deficient tourmaline: Description and crystal structure

JULIE B. SELWAY,¹ MILAN NOVÁK,^{1,*} FRANK C. HAWTHORNE,^{1,†} PETR ČERNÝ,¹ LUISA OTTOLINI,² and T. KURTIS KYSER³

¹ Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
² CNR Centro di Studio per la Cristallochimica e la Cristallografia via Abbiategrasso 209, 27100 Pavia, Italy
³ Department of Geological Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada

Abstract

Rossmanite is a new tourmaline species from near Rožná, western Moravia, Czech Republic. It forms pale pink columnar crystals about 25 mm long and 5 mm thick, elongated along c with striations parallel to c on the prism faces. It is brittle, H = 7, $D_{\text{meas}} =$ 3.00 g/cm³, $D_{calc} = 3.06$ g/cm³. In plane-polarized light, it is colorless. Rossmanite is uniaxial negative, $\omega = 1.645(1)$, $\epsilon = 1.624(1)$, trigonal, space group R3m, in the hexagonal setting a = 15.770(2), c = 7.085(1) Å, V = 1525.8(4) Å³, Z = 3. The strongest six Xray diffraction lines in the powder pattern are at d = 3.950 Å with I = 100% for (hkl) =(220); 2.552 Å, 93%, (051); 1.898 Å, 72%, (342); 4.181 Å, 58%, (211); 2.924 Å, 56%, (122); and 3.434 Å, 53%, (012). Analysis by a combination of electron microprobe, SIMS, H-line extraction, and crystal-structure refinement gave SiO₂ 38.10 wt%, Al₂O₃ 44.60, Na₂O 1.43, Li₂O = 1.13, B₂O₃ = 10.88, H₂O = 3.70, F = 0.20, O = F 0.08, sum = 99.96 wt%, Fe, Mg, Ca, Mn, Ti, F, K not detected. The formula unit (31 anions) is $(\Box_{0.57}Na_{0.43})^{\gamma}(Li_{0.71}Al_{2.17})^{z}Al_{6}(Si_{5.92}O_{18}) (B_{2.92}O_{9})(OH)_{3.83}F_{0.10}O_{0.07}$, with the ideal end-member formula \Box (LiAl₂)Al₆(Si₆O₁₈)(BO₃)₃(OH)₄; thus rossmanite can be derived from elbaite $[Na(Al_1 Li_1)(Si_6O_{18})(BO_3)(OH)_4]$ by the substitution $x \square_2 + YAl \rightarrow XNa_2 + YLi$, where \square = vacancy. The crystal structure of rossmanite was refined to an R index of 1.7% using 1094 observed (5 σ) reflections collected with MoK α X-radiation from a single crystal. The structure refinement confirmed the low occupancy of the X site and the presence of Li at the Y site. There is considerable positional disorder at the O1 and O2 sites induced by the local variations in bond-valence distribution associated with \Box -Na disorder at X and Li-Al disorder at Y.