Si-Al order and the *I*1-*I*2/*c* structural phase transition in synthetic CaAl₂Si₂O₈-SrAl₂Si₂O₈ feldspar: A ²⁹Si MAS-NMR spectroscopic study

BRIAN L. PHILLIPS,¹ MARTIN D. MCGUINN,² AND SIMON A.T. REDFERN^{2,*}

¹Division of Materials Science and Engineering, University of California, Davis, California 95616, U.S.A. ²Department of Geology, University of Manchester, Manchester M13 9PL, U.K.

ABSTRACT

We present ²⁰Si MAS-NMR spectroscopic data for a series of synthetic feldspar samples along the join CaAl₂Si₂O₈-SrAl₂Si₂O₈, from which the composition dependence and coupling of order parameters describing Si-Al order and the triclinic-monoclinic displacive transition were determined. Spectra of SrAl₂Si₂O₈ contain narrow peaks for the two crystallographic Si sites, plus additional peaks for Si having three and two Al nearest neighbors, indicating the presence of approximately 0.14 Al-O-Al linkages per formula unit and a value of $\sigma = 0.93$ for the short-range order parameter. For the triclinic feldspar samples, short-range Si-Al order increases continuously with Sr content from $\sigma = 0.89(3)$ for CaAl₂Si₂O₈ to 0.97(1) for Sr_{0.85}Ca_{0.15}Al₂Si₂O₈ to SrAl₂Si₂O₈. The variation of peak positions with composition is consistent with a structural phase transition near Sr_{0.85}Ca_{0.15} Al₂Si₂O₈ from *I* 1 to *I2/c*. The order parameter for this displacive transition is reflected by the chemical shift of the T1mz crystallographic site, and its composition dependence gives an order-parameter critical exponent of $\beta = 0.49(2)$, indicating classical second-order behavior.