American Mineralogist, Volume 108, pages 2331-2337, 2023

Crystal structure of calcium-ferrite type NaAlSiO₄ up to 45 GPa

FEI QIN^{1,2,*}, YE WU^{3,†}, SHENGCHAO XUE¹, DONGZHOU ZHANG^{4,}[‡], XIANG WU⁵, AND STEVEN D. JACOBSEN^{2,}§

¹School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing, China

²Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, 60208, U.S.A.

³School of Science, Wuhan University of Technology, Wuhan, China

⁴School of Ocean and Earth Science and Technology, Hawaii'i Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, U.S.A.

⁵State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China

ABSTRACT

Alkali-rich aluminous high-pressure phases including calcium-ferrite (CF) type NaAlSiO₄ are thought to constitute ~20% by volume of subducted mid-ocean ridge basalt (MORB) under lower mantle conditions. As a potentially significant host for incompatible elements in the deep mantle, knowledge of the crystal structure and physical properties of CF-type phases is therefore important to understanding the crystal chemistry of alkali storage and recycling in the Earth's mantle. We determined the evolution of the crystal structure of pure CF-NaAlSiO₄ and Fe-bearing CF-NaAlSiO₄ at pressures up to ~45 GPa using synchrotron-based, single-crystal X-ray diffraction. Using the high-pressure lattice parameters, we also determined a third-order Birch-Murnaghan equation of state, with $V_0 = 241.6(1)$ Å³, $K_{m} = 220(4)$ GPa, and $K'_{m} = 2.6(3)$ for Fe-free CF, and $V_{0} = 244.2(2)$ Å³, $K_{m} = 211(6)$ GPa, and K'_{m} = 2.6(3) for Fe-bearing CF. The addition of Fe into CF-NaAlSiO₄ resulted in a $10 \pm 5\%$ decrease in the stiffest direction of linear compressibility along the *c*-axis, leading to stronger elastic anisotropy compared with the Fe-free CF phase. The NaO₈ polyhedra volume is 2.6 times larger and about 60% more compressible than the octahedral (Al,Si)O₆ sites, with $K_0^{\text{NaO8}} = 127$ GPa and $K_0^{(Al,Si)O_6} \sim 304$ GPa. Raman spectra of the pure CF-type NaAlSiO₄ sample shows that the pressure coefficient of the mean vibrational mode, 1.60(7) cm⁻¹/GPa, is slightly higher than 1.36(6) cm⁻¹/GPa obtained for the Fe-bearing CF-NaAlSiO₄ sample. The ability of CF-type phases to contain incompatible elements such as Na beyond the stability field of jadeite requires larger and less-compressible NaO₈ polyhedra. Detailed high-pressure crystallographic information for the CF phases provides knowledge on how large alkali metals are hosted in alumina framework structures with stability well into the lowermost mantle.

Keywords: CF-type NaAlSiO₄, single-crystal structure refinements, incompatible Na elements, high pressures, Raman spectroscopy, lower mantle