In-situ high-temperature vibrational spectra for synthetic and natural clinohumite: Implications for dense hydrous magnesium silicates in subduction zones

DAN LIU¹, YOUWEI PANG¹, YU YE^{1,*}, ZHENMIN JIN¹, JOSEPH R. SMYTH², YAN YANG³, ZENGMING ZHANG⁴, AND ZHONGPING WANG⁴

¹State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China ²Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, U.S.A.

³Department of Earth Sciences, Institute of Geology and Geophysics, Zhejiang University, Hangzhou, 310058, China ⁴Physics Experiment Teaching Centers, University of Science and Technology of China, Hefei, 230026, China

ABSTRACT

Clinohumite is a potentially abundant silicate mineral with high water concentration (2~3 wt% H₂O) that is generated from dehydration of serpentine-group minerals in subduction zones. Previous studies show that fluorine substitution ($OH^- = F^-$) can stabilize clinohumite to significantly higher temperature in subduction zones, although temperatures within the slabs are thought to be well within the stability field of both F-bearing and OH-clinohumite. We collected in-situ high-temperature Raman and Fourier transform infrared (FTIR) spectra for both the synthetic $[Mg_{9}Si_{4}O_{16}(OH)_{2}]$ and natural [Mg_{7.84}Fe_{0.58}Mn_{0.01}Ti_{0.25}(SiO₄)₄O_{0.5}(OH)_{1.30}F_{0.20}] clinohumite samples up to 1243 K. Three OH bands above 3450 cm⁻¹ are detected for both the natural and synthetic samples with negative temperature dependence, due to neighboring H-H repulsion in the crystal structure. Additional OH peaks are detected for the natural sample below 3450 cm⁻¹ with positive temperature dependence, which could be explained by non-polar F⁻ substitution in the OH site. Hence, F⁻ substitution significantly changes the high-temperature behavior of hydrogen bonds in the humite-group minerals. On the other hand, we evaluated the mode Grüneisen parameters (γ_{iP} , γ_{iT}), as well as the intrinsic anharmonic parameters (a) for clinohumite, chondrodite, and phase A, the dense hydrous magnesium silicate (DHMS) phases along the brucite–forsterite join. The estimated averaged anharmonic parameters $(a_{i \text{ ave}})$ for these DHMS phases are systematically smaller than those of olivine. To model the thermodynamic properties of minerals (such as heat capacity) at the high-temperature conditions of the mantle, the DeBye model, which simply approximates the lattice vibrations as harmonic oscillators, is commonly used. In contrast to forsterite, such quasi-harmonic approximations are valid for clinohumite at subduction zone temperatures, as the anharmonic contribution is no more than 2% when extrapolated to 2000 K. Hence, the classic DeBye model can reasonably simulate the thermodynamic properties of these DHMS phases in subduction zones.

Keywords: Clinohumite, F substitution, Grüneisen parameter, anharmonicity, subduction slab, DHMS phases