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AbstrAct

The pressure dependence of thermal expansivity affects mineral density at pressure and is an 
extrapolator for calculating self-compression adiabats of a self-gravitating body. I review different 
models for the pressure dependence of expansivity and how to decide which performs best. A finite 
strain model, proposed here, performs better when used to calculate adiabatic temperature lapses in 
both the solid silicate and liquid metal parts of a planet than either an ad-hoc exponential dependence 
on pressure or a commonly used mineral physics model. Choosing a particular thermal expansivity 
pressure dependence leads to significantly different temperatures in planetary interiors, and to inferred 
subsolidus properties related to homologous melting temperature. In particular, thermal expansivity in 
liquid metal in planetary cores at pressures comparable to Earth’s core is significantly affected. The 
universality of the parameterization provides a simple way to model rocky planet interiors in our solar 
system and exoplanet interiors.
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introduction

Planetary accretion is the process by which a planet grows 
from a nucleation site in the nebular dust and gas disk surround-
ing a young star into a self-gravitating body in orbit around the 
star. The nascent planet grows through stages governed by the 
dominant forces driving accretion: adhesive, electrostatic, and 
then gravitational (Armitage 2010). The growing planet matures 
from a planetesimal, to an embryo stage, and finally to a planet 
(Righter and O’Brien 2011). The nucleation site in the com-
positionally zoned disk controls whether the evolved planet is 
dominantly gaseous or rocky. After a rocky planetesimal reaches 
a state where it warms sufficiently, whether heated by short-lived 
radioactivity, by impact heating, or by adiabatic heating due to 
the internal pressure increase, it differentiates into metal—core 
and silicate—crust and mantle.

The details of the differentiation process rely on knowledge 
of the internal temperature structure of the growing planet. 
When bodies are small, thermal diffusion dominates and the 
disk temperature and short-lived radiogenic element abundance 
control the planetesimal’s temperature (Šrámek et al. 2012). 
After planets grow sufficiently large to differentiate, solid-state 
convection in the silicate mantle and liquid state convection in 
the metallic cores govern the thermal structure (Breuer et al. 
2010). These are essentially adiabatic temperature profiles set 
by the conditions at the convective boundary layers (the surface 
or the core-mantle boundary). Because the thermal expansivity 
(a) along with gravity (g) and heat capacity (CP) are involved 
in the calculation of the adiabatic gradient,

dT
dr ad

=
T g
CP

  (1)

an accurate description of a’s pressure dependence is needed to 
describe the temperature. The behavior of g with radius, in contrast, 

is simply parameterized (essentially two linear segments; see 
Fig. 1) and the pressure dependence of CP is small enough to be 
neglected if the mineralogy is not known (Appendix1).

For a given mass, a planet’s size is governed by its density 
structure. In turn, the density is set by the proportions of the 
planet’s constituent minerals and the equation of state (EoS) of 
those minerals. Because a’s definition is

=
1
V

dV
dT P

=
1 d

dT P

, (2)

it represents the variation in volume (V) or density (r) with 
temperature

There is a difference between a’s role in Equations 1 and 2. 
The thermodynamically astute reader will recognize a fallacy 
in this claim, and indeed there is: through the unity of thermo-
dynamic relations, a is the same property in Equations 1 and 2. 
In Equation 1 however, a need not represent any real object. 
An example is the hard-sphere liquid (Hansen and McDonald 
2013). Its free energy may be written explicitly (Lee 1995) 
and its thermal expansivity calculated from derivatives of the 
expression with respect to pressure and temperature. However, 
no experiment can measure a by heating a hard-sphere liquid 
and measuring its change in volume, which is the natural inter-
pretation of Equation 2.

In Equation 1, a represents a pressure dependent bulk prop-
erty of the material and can simply be a suitably chosen function 
of r or r that reproduces an adiabatic planetary density profile 
such as PREM (Dziewonski and Anderson 1981). An adiabat 
calculated that way might also be compared with a melting 
curve for metal or peridotite to determine melting conditions 
to assess whether a magma ocean might arise or a core might 
segregate in a growing planet, such as Labrosse et al. (2015) 
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did. In convection modeling, a governs the buoyancy force 
arising from temperature variations in the bulk convecting fluid, 
liquid or viscous solid (Turcotte and Schubert 2002). Driscoll 
and Olson (2011), for example, used a pressure-dependent bulk 
a in their study of magnetic field strength around exoplanets, 
where the material was classified as iron, peridotite, perovskite, 
and post-perovskite.

In contrast, a is an intrinsic property of a mineral obtained 
through measurement of V vs. T and modeled with Equation 2 
and then incorporated as part of an EoS. As an example, Stixrude 
and Lithgow-Bertelloni (2011) built a detailed mineralogical 
model of the mantle and calculated thermal expansion of the 
various assemblages met along P-T trajectories through it, lead-
ing to a detailed, and discontinuous description of the material.

If used to represent a bulk property, a might not ever rep-
resent a value for any particular mineral or mineral aggregate. 
Moreover, in the absence of knowledge of the constituent 
mineralogy of, say, an exoplanet, a’s pressure dependence 
captures the mineralogical tendency to adopt denser forms at 
higher pressures in a general way. Thus, the need to parameterize 
self-compression and mineral behavior lead to different a model 
choices, which is the subject of this article.

MetHods

Material equation of state (EoS)
To model the stages of planetary accretion of a rocky planet, a simple material 

parameterization is desirable, essentially due to one’s ignorance of the identity 
of the specific materials and of their proportions. The two basic constituents are 
metal and silicate that I treat as single component phases in the thermodynamic 
sense. For computational simplicity I use a polythermal Murnaghan equation of 
state for each because it can be evaluated in closed form for r(P,T), the density at 

a particular pressure and temperature. Explicitly,

r(P,T) = Ia(P,T) × r0(PKʹ/K + 1)1/Kʹ  (3)

with r0 a density at P = 0 and reference temperature T0, K is the isothermal bulk 
modulus at P = 0, and T0 and Kʹ is its pressure derivative. Ia represents the inte-
grated thermal expansion effect on density from the reference density, r0. Again, 
for simplicity, I assume that da/dT is zero [a high-temperature—high-pressure 
approximation (Chopelas and Boehler 1989)], but that a is pressure dependent. 
Hence one can integrate Equation 2 to define

Ia(P,T) = exp[–a(P) × (T – T0)].  (4)

Pressure dependence of thermal expansion

The decrease of thermal expansivity with increasing pressure is well established 
observationally and theoretically (Chopelas and Boehler 1989; Anderson et al. 
1992). One simple way to parameterize this is through an exponential decrease 
with increasing pressure (Tosi et al. 2013). Using the material bulk modulus as an 
internal pressure scale, one can write

a(P) = a0exp(–aʹP/K)  (5)

with aʹ the scaled rate of pressure decrease from the zero pressure value a0. If, say, 
a decreases to 50% of its ambient pressure value at the CMB [P = 135 GPa; (Stacey 
1992)] then a śil = log(2) × 135/Ksil, and for metal, aḿet = log(2) × (360 – 135)/Kmet. 
Table 1 lists these parameters.

An alternative parameterization (Chopelas and Boehler 1989; Anderson et al. 
1992) is to relate the pressure dependence to the volume change on compression 
V/Va. Chopelas and Boehler (1989) proposed

(dloga/dlogV)P = d	  (6a)

with d = 5.5 ± 0.5, whereas a generalized version of this is (Anderson et al. 1992; 
Wood 1993),

(dloga/dlogV)P = d0(V/V0)k  (6b)

with d0 = 6.5 ± 0.5 and k = 1.4. These forms lead to either a power law (Eq. 6a) or 
exponential dependence (Eq. 6b) on volume,

a = a0(V/V0)d  (7a)
or

= 0 exp 0

κ
V V0( )κ 1( )/ .  (7b)

The equivalence of Equations 6a and 6b at small compressions may be seen by 
letting V/V0 = (1 – e). Then from Equation 7a, (V/V0)d ≈ (1 – de). From Equation 7b, 
(V/V0)k – 1 ≈ –ke and exp[(d0/k)(–ke)] ≈	1 – d0e. Hence the two forms are identi-
cal for small compressions if d ≈ d0, and Equation 6b offers more control over 
extrapolation to higher compressions through k. Table 1 contains the values used.

A final alternative for a’s pressure dependence recognizes the similarity of 
the dependence on V/V0 to the finite strain parameter f = 1⁄2[(V/V0)–2/3 – 1] (Birch 
1952). Thus one can also relate a to f (Driscoll and Olson 2011):

a = a0f(f) (8)

where f is some positive, monotonically decreasing function of f. Lest this char-
acterization be too vague, the particular choice used here is

f(f) = (1 + 2f )–5/2[1 + (1 + 2f )–2]/2.  (9)

In their planetary modeling, Driscoll and Olson (2011) used a simpler expression, 
f(f ) = (1 + 2f)–9/2.

Planetary P, T, and g profiles
To show the consequences of different choices for the pressure dependence of 

thermal expansivity, one needs to calculate consistent pressure (P), temperature 
(T), and gravitational acceleration (g) profiles. For a given planetary mass, I take 
the silicate and metal masses proportional to those in the Earth (Table 1). Either 
a differentiated profile may be calculated from the metal and silicate equations of 
state, or an undifferentiated profile may be calculated from a mechanical mixture 

fiGure 1. Comparison between calculated (dashed) and PREM 
reference (solid) gravity (g) and pressure (P) profiles (Dziewonski and 
Anderson 1981) for an adiabatic temperature profile initiated at 1623 
K at the surface that is continuous at the CMB. Vertical dashed line 
shows PREM CMB radius. Values here are calculated with parameters 
in Table 1 and the finite strain a model given by Equation 9. Pressure at 
center, gravity profile and radii of CMB and planet are ≤0.1% of PREM.
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of the components. A consistent P-T profile is obtained iteratively from initial 
conditions assuming separate adiabatic profiles in the mantle and in the core, or a 
single adiabatic profile if homogeneous. Iteration stops when the fractional change 
in the body’s gravity and radius is <10–5.

One or two temperature fixed points are specified for each profile: the tem-
perature at the surface and, if differentiated, the temperature at the CMB. Given 
the mass of the planet M, calculating the P, T, and g profile involves these steps:

(1) Set P(r) = 0, T(r) = constant (mantle and/or core).
(2) Calculate radius of the CMB and planet R with prevailing P(r), T(r) 
by integrating dM/dr = 4pr2r(P(r),T(r)).
(3) Calculate g(r) = G(Mr/r2), where Mr is the mass within radius r.
(4) Using the identity dP/dr = –g(r)r(P(r),T(r)), calculate a new “cold 
body” pressure profile P r( )= P r( ),T r( ))

r

R
g r( )( dr.

(5) Calculate a “cold body” T(r) using the adiabatic gradient (Eq. 1) fixed 
at the conditions of the surface (and if differentiated, the CMB).
(6) Compare to previous R and g(R); if fractional change <10–5, profile 
is converged.
(7) Not yet converged; return to step 2 with new “warmer body” P(r), 
T(r), and g(r).

The algorithm typically converges within 5 to 10 iterations. With the values 
in Table 1, and with an adiabatic profile initiated at the surface at 1623 K [a 
characteristic shallow mantle temperature (Parsons and Sclater 1977; Stein and 
Stein 1992)] and continuous with a core adiabat at the CMB, the planetary radius, 
core radius, and gravity are within 0.1% of the Earth (Dziewonski and Anderson 
1981). Figure 1 shows a comparison with calculated P and g profiles for the Earth.

results

The choice of a finite strain-based model for the pressure 
dependence of a is not immediately obvious. My assessment 
process involved a suite of plausible formulas for f(r) (Fig. 2). 
The simplest formulas do not decrease fast enough through the 
mantle and core range of f to reproduce the tabulated decreases 
compiled from geophysical sources (Stacey 1992). I found 

through experimentation that a product of monotone decreas-
ing functions, exemplified by Equation 9, fit the trends best for 
both metal and silicate. Relative to that, the mineral physics 
parameterizations asymptotically flatten quickly with increas-
ing strain. The consequences of this behavior will become clear 
once the various models are used to compute adiabats.

Figure 3 shows T profiles due to adiabatic heating. In all 
cases an Earth-mass ME planet with a fraction of metal to silicate 
~0.32 is used (Table 1). Temperature at the surface is 1623 K 
and at the CMB is 4000 K. Unlike Figure 1, temperature is not 
forced to be continuous at the CMB; rather, the CMB tempera-
ture is the foot of a new adiabat. I also show two peridotite 
solidus curves, one as parameterized by Wade and Wood (2005) 
and the other by Fiquet et al. (2010) (Table 1). The planetary 
surface and CMB radii are slightly different given the different 
a parameterizations.

The slopes of the adiabatic curves all approach zero at the 
center of the Earth, due to the adiabat’s dependence on g(r), 
which is zero there (see Eq. 1). However, even though the tem-
peratures at the CMB are identical, the temperatures at the center 
are quite different as are the slopes of the curves. For the same 
CMB temperature and approximately the same core radii, the 
temperatures at the center are 4388, 5616, and 7334 K. Clearly, 
the choice of the thermal expansivity’s pressure dependence is 

fiGure 2. Finite strain parameterizations for the pressure dependence 
of a. Lines show four finite strain models and the equivalent finite strain 
dependence of the mineral physics model, Equation 7b, for metal and 
silicate (Table 1). The finite strain range covers that found in rocky 
planetary interiors; vertical lines show f values encountered at key levels 
in the Earth according to Equation 3 using thermophysical quantities in 
Table 1 ( f = 1 corresponds to an ~70 × Me planet using these values). 
Simple monotonically decreasing, positive expressions for f(f) result 
in small decreases in a at large strains. The preferred Equation 9 leads 
to a 50% decrease for metal between the CMB and Earth’s center 
and a 70% decrease between the surface and the CMB. The mineral 
physics model, Equation 7b, decreases quickly to its asymptotic value, 
exp(–d0/k), leading to low values in metal (d0 = 6.4, k = 1.4) in the core 
and a sharp decrease in silicate (d0 = 5, k = 4.4) in the mantle. Dashed 
line is f dependence used by Driscoll and Olson (2011).

Table 1.  Thermophysical data for metal and silicate
Quantity Value Scale and units
M (silicate) 4.028 ×1024 kga

M (metal) 1.947 ×1024 kga

r (mantle) 6371 kma

r (core) 3480 kma

Silicate EoS
Tref 1723 K
P0 3330 kg/m3

K 80 GPa
K΄ 3.38 
a0 3.59 ×10–5 K–1

a΄ 3.851 ×10–1

d0 5 
k 4.4 
CP 880 J/(kg∙K)

Metal EoS
Tref 1812 K
P0 6190 kg/m3

K 130 GPa
K΄ 3.20 
a0 5.04 ×10–5 K–1

a΄ 4.005 ×10–1

d0 6.5 
k 1.4 
CP 800 J/(kg∙K)

Tm (silicate)b,d  

T0 1803 K
a 2.19 
b  22.56 GPa

Tm (silicate)c,e  

T0 2000 K
b 26.316 K/GPa
a Source: Stacey (1992). b Source: Fiquet et al. (2010). c Source: Wade and Wood 
(2005). d Simon equation parameters Tm(P,T0,a,b) = T0 × (1 + P/b)(1/a). e Linear equation 
parameters Tm(P,T0,b) = T0 + b ×	P.  
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important when phenomena relative to an adiabatic temperature 
gradient are involved.

The methods yield notable temperature differences at the 
mantle side of the CMB. The adiabats projected using the finite 
strain and mineral physics models yield much lower tempera-
tures. One would conclude from the low temperatures there that 
a significant thermal boundary layer would develop, driving con-
vection in the mantle by bottom heating. In contrast, the degree 
of basal heating with the exponential model would be smaller, 
with a correspondingly lower potential to drive convection.

Another difference between the adiabatic trajectories are their 
curvatures in the mantle. The mineral physics and finite strain 
adiabats are quasi-linear there. However, the exponential adiabat 
is subtly concave upward. Figure 4 displays the mantle portions 
of the three curves relative to the peridotite solidus to highlight 
this behavior and its consequences. If an ~500 K warmer foot for 
the adiabat were chosen, the exponential model for the adiabat 
would intersect the solidus at two radii. Two solidus crossings 
would suggest that zones of melt could form at both the base of 
the mantle and at the surface, leading to a basal magma ocean 
(Labrosse et al. 2007). The other models would yield melting at 
outer planetary radii, or a surface magma ocean.

As a way of choosing, which is the preferred parameteriza-
tion, I recruit another thermodynamic expression for the adiabatic 
lapse (Stacey 1992):

dT
dr ad

=
T g

KS

=
T g

VP
2 4 / 3( )VS

2   (10)

with g the thermodynamic Grüneisen parameter and KS the 

adiabatic bulk modulus. Because g in the outer core is a virtually 
constant value, 1.52 (Alfè et al. 2002), use of VP in the core liquid, 
along with g(r) calculated from PREM, provides a test for which 
model best describes compression in the core, and, to a lesser 
extent, the mantle. The models (Fig. 5) are of Earth-mass planets 
with a surface adiabat initiated at 1623 K and a CMB adiabat 
initiated at 4000 K. The comparison with PREM shows that the 
finite strain model for a most closely reproduces PREM’s adia-
bat in the core liquid. The situation in the mantle is not as easily 
compared due to the phase transitions in upper mantle minerals 
and the material being polymineralic. Restricting the comparison 
to the lower mantle, where the mineralogy changes little, the finite 
strain and mineral physics models perform equally well compared 
to PREM, with g ≈ 1.5. The lower mantle range for the Grüneisen 
parameter is 1 ≤ g ≤ 1.4 based on g estimates and the adiabatic lapse 
(Brown and Shankland 1981; Jackson 1998; Katsura et al. 2010; 
Stixrude and Lithgow-Bertelloni 2011). The a models yielding a 
comparable lapse lie marginally beyond the high end of the range.

The mineral physics based model and the finite strain model 
perform equally well in the silicate mantle, but the performance 
is notably poorer in the core for the mineral physics based model. 
It is worth asking whether the poor performance in the core is due 
to the choice of particular values for the parameters used, or due 
to an inappropriate physical model. To answer this, I determined 
the parameters a0, d0, and k that fit PREM’s adiabatic lapse in the 
core best. They are a0 = 4.98 × 10–5K–1, d0 = 2.15, and k = 1 × 10–4. 
While a0 is indistinguishable from the value in Table 1, the k value 
shows that Equation 6a is a better model for an Earth-like core than 
is Equation 6b—a surprising result for an improved physical model 

fiGure 3. Temperature as a function of radius for three models for 
a’s pressure dependence, exponential (Eq. 4), mineral physics based 
(Eq. 7b), and finite strain based (Eq. 9). Each is initiated from an adiabat 
of 1623 K at the surface and 4000 K at the CMB. Dashed lines show 
two parameterizations of the peridotite solidus, Wade and Wood (2005) 
and Fiquet et al. (2010). Aspects to note in the comparison are the slight 
upward concavity of the exponential model temperature profile in the 
mantle, and the virtually isothermal core temperature of the mineral 
physics based model.

fiGure 4. Mantle temperature difference from peridotite solidus 
as a function of radius for three models for a’s pressure dependence, 
exponential (exp, Eq. 5), mineral physics based (mp, Eq. 7b) and finite 
strain based (f, Eq. 9). Each is initiated from an adiabat of 1623 K at 
the surface. Reference peridotite solidus is Fiquet et al. (2010) (F’10). 
Wade and Wood’s (2005) solidus also shown for reference (WW’05). 
The curvature of the exponential model is such that it could intersect 
the adiabat in two places, whereas the other models lead to a single 
crossing point.
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(Anderson and Isaak 1993). Moreover, d0 is significantly different 
than its range of 4–6 for silicate minerals (Anderson et al. 1992), 
and differs from Kʹ, deviating from the rule of thumb that da ≈ Kʹ 
for silicates (Anderson et al. 1992). The poor performance of the 
mineral physics based model may not be surprising if one reflects 
that liquids and solids differ in their internal structure and thus the 
interatomic forces that give rise to a, and K and Kʹ. However, it 
underscores the advantage of the finite strain model: it captures 
the properties of both solids and liquids simply and uniformly.

The adiabatic profiles, while they yield Earth-like surface 
and CMB radii and gravity are not very accurate density models 
everywhere. Compared to PREM (Fig. 6), the density is overes-
timated in the shallow mantle by up to 30%. Core densities are 
within ±2% in the outer core and the density gradient is close to 
PREM, but there is no provision in the model for a solid inner 
core and hence the densities are underestimated. Upper mantle 
densities are not particularly well described due to the transition 
zone phase changes that affect both the temperature structure and 
the density (Katsura et al. 2010; Stixrude and Lithgow-Bertelloni 
2011). In most of the planet, however, the density profile is within 
±5% of PREM’s.

discussion

The a models explored here focused on three aspects of the 
resulting adiabatic profiles: (1) their convexity; (2) their tem-
perature lapse; and (3) their approximation to the known density 
profile of the Earth.

All of the models yield Earth-like dimensions, gravity, and 
maximum pressures for Earth-mass objects that have Earth-like 
metal/silicate ratios. Of the three parameterizations, however, the 
finite strain-based choice yields an adiabatic lapse most closely 
resembling Earth’s in both the silicate and the metal parts of 

the planet (Fig. 5). This is established though comparison with 
PREM and the independently known behavior of the thermal 
Grüneisen parameter g. The finite strain model matches the core’s 
properties best, and performs as good as the mineral physics-
based model in the mantle. A variant finite strain model used 
by Driscoll and Olson (2011) is not as successful, showing that 
some care in choosing f(f ) (Eq. 8) is warranted.

The exponential model, though intuitive and mathematically 

fiGure 5. Adiabatic temperature lapses in the core (a) and lower mantle (b) for three a pressure dependence models (solid lines), and for 
the PREM model (dashed lines). Each profile is initiated at 1623 K at the surface and 4000 K at the CMB. The models are exponential (exp, Eq. 
5), mineral physics based (mp, Eq. 7b), and finite strain based [f, Eq. 9; Driscoll and Olson (2011) variant labeled f (DO)]. The PREM adiabatic 
lapse (dashed line) is calculated from the the outer core wavespeed polynomial, g(r) calculated from PREM r, and Grüneisen parameter g = 1.52. 
In the mantle, two profiles with g values bracketing the lower mantle adiabatic lapse range (Brown and Shankland 1981; Jackson 1998; Katsura 
et al. 2010) are shown.

fiGure 6. Density differences for three models relative to PREM 
density. Each profile is initiated from an adiabat of 1623 K at the surface 
and 4000 K at the CMB. The models are exponential (exp, Eq. 5), mineral 
physics based (mp, Eq. 7b) and finite strain based (f, Eq. 9).
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and computationally straightforward (Tosi et al. 2013), has 
an undesirable curvature in a T–r plot (Fig. 4). The character 
of the curvature could lead to false inferences about magma 
ocean development and to inferences of homologous melting 
temperature that control silicate rheology and seismic attenu-
ation (Stacey 1992). The mineral physics model, despite its 
solid theoretical and observational underpinnings, leads to a 
temperature lapse that is too low in the core (Figs. 2 and 3).

None of the models accurately reproduce density throughout 
the mantle and core (Fig. 6), mainly because in their need for 
simplicity the EoS used neglects the solid-solid phase transi-
tions that characterize the compression of the shallow mantle. 
Once into the lower mantle, however, they yield densities that 
are ±5% of PREM densities and thus do nothing outré given 
our knowledge of material behavior. Whether or not the profiles 
match PREM’s density is unimportant when used for estimat-
ing the conditions of exoplanets, when only mass and radius is 
known (Howard et al. 2013). The simple metal+silicate model 
reproduces Earth’s gross properties well (Fig. 1).

One could imagine further efforts to improve an a model 
by relaxing the high-temperature–high-pressure approximation 
and incorporating a nonzero temperature derivative, or, indeed, 
a Suzuki-type Debye model for thermal expansion (Suzuki 
1975). Whether the added complexity is warranted to improve 
the performance for the silicate planetary component is not 
obvious. The virtue of the approach advocated here is that it is 
implemented in a simple way and can be incorporated into plan-
etary accretion modeling without undue computational burden.

iMplicAtions

The adiabatic gradient’s definition involves a, but the im-
plications of a particular choice for a’s pressure dependence 
on the gradient’s behavior are not immediately obvious. Even 
mineral physics-based forms might not accurately represent 
bulk material behavior. Different forms lead to unexpected 
curvature in self-compression profiles and to significantly 
different adiabatic temperature lapses, potentially leading to 
unwarranted inferences for melting, freezing, and phenomena 
linked to homologous temperature.

The finite strain model for a’s pressure dependence fits 
Earth’s adiabatic lapse the best and appears equally suited 
to silicate solids and metallic liquids. Modelers of exoplanet 
compositions and internal structure could benefit from the 
uniformity and simplicity of the formulation. On account 
of the higher thermal expansivity in planetary cores that the 
finite strain model prescribes, the role of thermal buoyancy 
in numerical dynamo simulations may need to be reassessed.
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