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abstraCt

A fundamental goal of mineralogy and petrology is the deep understanding of mineral phase relation-
ships and the consequent spatial and temporal patterns of mineral coexistence in rocks, ore bodies, 
sediments, meteorites, and other natural polycrystalline materials. The multi-dimensional chemical com-
plexity of such mineral assemblages has traditionally led to experimental and theoretical consideration 
of 2-, 3-, or n-component systems that represent simplified approximations of natural systems. Network 
analysis provides a dynamic, quantitative, and predictive visualization framework for employing “big 
data” to explore complex and otherwise hidden higher-dimensional patterns of diversity and distribution 
in such mineral systems. We introduce and explore applications of mineral network analysis, in which 
mineral species are represented by nodes, while coexistence of minerals is indicated by lines between 
nodes. This approach provides a dynamic visualization platform for higher-dimensional analysis of phase 
relationships, because topologies of equilibrium phase assemblages and pathways of mineral reaction series 
are embedded within the networks. Mineral networks also facilitate quantitative comparison of lithologies 
from different planets and moons, the analysis of coexistence patterns simultaneously among hundreds of 
mineral species and their localities, the exploration of varied paragenetic modes of mineral groups, and 
investigation of changing patterns of mineral occurrence through deep time. Mineral network analysis, 
furthermore, represents an effective visual approach to teaching and learning in mineralogy and petrology.

Keywords: Network analysis, igneous petrology, mineral evolution, copper, chromium, phase equilibria, 
Bowen’s reaction series, visualization, big data, cluster analysis, multi-dimensional scaling, education

intrOduCtiOn

Network analysis encompasses a powerful array of mathemati-
cal and visualization methods that have found numerous applica-
tions in the presentation and interpretation of “big data” in varied 
fields of technology and science (Kolaczyk 2009; Newman 2013). 
Technological networks include the physical infrastructures of 
power grids (Pagani and Aiello 2013), roads (Dong and Pentland 
2009), and water supply systems (Hwang and Houghtalen 1996; 
Geem 2010), as well as communications infrastructure (Pinheiro 
2011), commercial distribution networks (Guimerá et al. 2005), 
and the Internet and other information networks (Otte and Rous-
seau 2002). In the familiar realm of social interactions, networks 
are used to quantify and visualize data in such diverse topics as the 
spread of disease, the links among Facebook “friends,” the struc-
ture of terrorist organizations, and connections among research 
collaborators (Otte and Rousseau 2002; Abraham et al. 2010; Scott 
and Carrington 2011; Kadushin 2012). Network analysis has been 
applied in biology to the study of ecosystem diversity (Banda et 
al. 2016), food webs (Martinez 1992; Dunne et al. 2008), neural 

networks (Müller et al. 1995), biochemical pathways (Costanzo 
et al. 2016), proteomics and protein-protein interactions (Amital 
et al. 2004; Harel et al. 2015; Uezu et al. 2016; Leuenberger et 
al. 2017), paleogeography (Sidor et al. 2013; Dunhill et al. 2016; 
Huang et al. 2016), and evolution (Vilhena et al. 2013; Cheng et al. 
2014; Corel et al. 2016). In each of these network applications and 
more, the modeling, graphing, and analysis of data reveals previ-
ously unrecognized patterns and behaviors in complex systems.

Qualitative network-like representations of minerals have been 
presented previously (e.g., Christy et al. 2016). However, in spite 
of its utility and widespread application, quantitative network 
analysis does not appear to have been applied to mineralogical 
problems. Here we introduce and apply network analysis to topics 
in mineralogy and petrology—fields that are especially amenable 
to this approach because they consider systems of numerous 
mineral species that coexist in myriad combinations in varied 
deposits. In particular, we demonstrate that network analysis of 
equilibrium mineral assemblages has the potential to elucidate 
phase relationships in complex multi-dimensional composition 
space, while revealing previously hidden trends in spatial and 
temporal aspects of mineral diversity and distribution.

In this contribution we consider varied network representations 
of three contrasting mineral systems: (1) common rock-forming 
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minerals in intrusive igneous rocks; (2) terrestrial minerals con-
taining the element chromium; and (3) minerals containing the 
element copper. These subsets of the more than 5200 mineral 
species approved by the International Mineralogical Associa-
tion’s Commission on New Minerals and Mineral Names (IMA-
CNMMN) exemplify the potential of network analysis to address 
fundamental questions in mineralogy and petrology.

ExaMPlEs OF MinEral nEtwOrks

Minerals, whether in rocks, sediments, meteorites, or ore 
deposits, exist as assemblages of coexisting species. Here we 
introduce mineral networks as a strategy to represent and analyze 
the large and growing data resources related to these assem-
blages with various mathematical and graphical models—network 
“renderings” that are available through open access sources. In 
each case mineral networks employ nodes (also known as verti-
ces), each corresponding to a mineral species. Some node pairs 
are connected by links (also known as edges), which indicate that 
those two minerals are found together at the same location or de-
posit. Variations in the ways that nodes and links are represented 
highlight different aspects of network relationships, as illustrated 
in the following examples.

Fruchterman-Reingold force-directed networks
Figure 1a illustrates a simplified Fruchterman-Reingold force-

directed network (Fruchterman and Reingold 1991; Csardi and 
Nepusz 2006), representing 36 major rock-forming minerals that 
occur in holocrystalline intrusive igneous rocks, as described in 
Alfred Harker’s classic Petrology for Students (Harker 1964). 
Mineralogical descriptions of 77 igneous rocks, each with 1 to 6 
major minerals (see Supplemental1 Information 1), provide the 
input data for this visualization.

The Fruchterman-Reingold force-directed graph algorithm is 
based on two main principles: (1) vertices connected by an edge 
should be drawn near each other and (2) vertices generally should 
not be drawn too close to each other. These criteria resemble those 
of molecular or planetary simulations where bodies exert both at-
tractive and repulsive forces on one another. This method attempts 
to balance the energy of the system through iterative displacement 
of the vertices by calculating the effect of attractive forces on each 
vertex, then calculating the effect of repulsive forces, and finally 
limiting the total displacement with a temperature parameter. In 
this rendering, we have no control over the length of the edges; 
edge length is determined by the final positions of vertices as the 
system reaches equilibrium, however, highly connected groups of 
nodes will tend to form clusters.

In Figure 1, we created a simplified Fruchterman-Reingold 
force-directed network using the igraph package in R. We imported 
tabulated data on coexisting rock-forming minerals into R as a data 
frame, which was then converted into a matrix object to enable vi-
sualization using the igraph package. The igraph software enables 
a high level of customization based on different network metrics. 
If “auto.layout” is used, then the package finds the best-suited 
algorithm based on the nodes and the number of links between the 

nodes. After some preliminary analysis, we found the best-suited 
algorithm to be the Fruchterman-Reingold force-directed network 
with self-loops removed.

Note that many of the mineral names employed by Harker 
do not correspond to approved IMA-CNMMN species. In some 
instances, such as “biotite,” “hornblende,” and “tourmaline,” the 
names once commonly employed by optical petrologists have 
been replaced by several related species (i.e., annite, fluorannite, 
siderophyllite, and tetraferriannite for “biotite”). In the case of 
plagioclase feldspar, on the other hand, Harker distinguishes six 

FigurE 1. (a) A Fruchterman-Reingold force-directed network diagram 
of 36 rock-forming minerals in holocrystalline intrusive igneous rocks. Each 
circular node represents a rock-forming mineral and each link indicates pairs 
of coexisting minerals in one or more rocks, as recorded in Harker (1964). 
(b) Different types of igneous rocks appear as closely linked clusters, or 
“cliques,” in this diagram.

1Deposit item AM-17-86104, Supplemental Material (Excel files and movie 
files). Deposit items are free to all readers and found on the MSA web site, via the 
specific issue’s Table of Contents (go to http://www.minsocam.org/MSA/AmMin/
TOC/2017/Aug2017_data/Aug2017_data.html).  

b

a

http://www.minsocam.org/MSA/AmMin/TOC/2017/???2017_data/???2017_data.html
http://www.minsocam.org/MSA/AmMin/TOC/2017/???2017_data/???2017_data.html
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compositional variants—albite, oligoclase, andesine, labradorite, 
bytownite, and anorthite—as opposed to the two end-member 
species albite and anorthite recognized as valid species by the 
IMA-CNMMN.

A consequence of these graphical procedures is that each igne-
ous rock type, such as granite, olivine basalt, or nepheline syenite, 
is embedded as a localized, fully interconnected subset of nodes, 
or “clique,” in this network (Fig. 1b). For example, the clique for 
minerals commonly found in granite includes quartz, muscovite, 
biotite, orthoclase, albite, oligoclase, microcline, hornblende, and 
riebeckite, whereas olivine basalt contains the clique of labradorite, 
augite, forsterite, and magnetite. Each of the 77 holocrystalline 
igneous rocks described by Harker (1964) is similarly embedded 
in this network. Thus, this visualization in a sense represents the 
sweep of igneous petrology in a single diagram—a result that hints 
at the large amount of multi-dimensional information embedded in 
network representations, while also suggesting a visual opportunity 
for teaching and learning about rocks and minerals.

Multi-dimensional scaling and mineral phase topologies
A major research objective of mineralogy and petrology for 

more than a century has been the elucidation of mineral reaction 
series and phase equilibria (e.g., Bowen 1928; Yoder 1976). We 
postulate that, because mineral networks are based on observed 
assemblages of coexisting minerals, they must embed information 
on phase topologies and thus have the potential to reveal phase 
relationships in systems not yet studied experimentally.

To illustrate this potential we compiled coexisting mineral 
data on varied intrusive igneous rocks from A Descriptive Petrog-
raphy of the Igneous Rocks by Albert Johannsen (1932–1938). 
The relatively small number of primary rock-forming minerals 
in intrusive igneous rocks, coupled with the likelihood that these 
minerals formed under equilibrium conditions and are not subject 
to the complications of metamorphism, diagenesis, and other 
alteration processes, make these minerals an excellent test case 
for network analysis. We consolidated the lists of minerals in Jo-
hannsen’s multi-volume treatment of 729 crystalline igneous rocks 
into coexistence data for the 51 primary rock-forming minerals 
(Supplemental1 Information 2). We used various mineral network 
renderings to study the patterns of coexisting phases in these rocks.

We initially employed multi-dimensional scaling (MDS) in 
both three- and two-dimensional renderings (https://github.com/
lic10/DTDI-DataAnalysis; Figs. 2 and 3). MDS is an approach to 
visualizing the similarities between points of a high-dimensional 
data set in a lower-dimensional space. The similarities between 
the data points are represented as distances between the projected 
points in the lower-dimensional space, where the objective of the 
scaling is to determine the coordinates of these projected points 
while preserving the distances as well as possible. In our case, 
the data points are mineral species, and the distances between 
points are inversely related to the degree of coexistence of the two 
minerals. We created the MDS diagrams in Figures 2 and 3 using 
the “cmdscale” command of the “stats” package in R (see https://
github.com/lic10/DTDI-DataAnalysis). We loaded the Johannsen 
igneous rock data set (1932–1938) into R as a data frame, and 
generated a second data frame as a symmetric 51 × 51 mineral 
matrix in which the value recorded at matrix element ij represents 
the calculated distance, dij between nodes i and j. Distances were 

projected on both two- and three-dimensional spaces. We used 
the “rgl” package in R (Adler et al. 2016) to generate the 3D plot. 
In general, a network containing N nodes requires a representa-
tion in (N – 1) dimensions to satisfy exactly all dij. Consequently, 
MDS diagrams of fewer than (N – 1) dimensions employ distance 
least-squares analysis to distribute nodes as a projection from 
higher-dimensional space.

Familiar aspects of igneous mineral phase relationships are 
embedded in the multi-dimensional scaling diagram for igneous 
minerals. For example, Bowen (1928) proposed a mineral reac-

FigurE 2. Multi-dimensional scaling diagrams of 51 rock-forming 
minerals in 729 igneous rocks tabulated by Johannsen (1932–1938). 
(a) Three-dimensional rendering (see Supplemental1 Information 3 for 
animation). (b) Two-dimensional rendering with minerals from Bowen’s 
reaction series (Bowen 1928) circled and connected with arrows [mafic 
trend (circled in red), plagioclase series (circled in blue), and late-stage 
trend (circled in green)].

a

b
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tion series for igneous rocks in which Mg-Fe minerals tend to 
crystallize in a mafic cooling sequence (olivine → pyroxene → 
hornblende → biotite), whereas plagioclase feldspars transition 
from more calcium-rich to more sodium-rich varieties. At lower 
temperatures, late-stage minerals display a trend from alkali feld-
spar to muscovite to quartz. These mineral crystallization trends 
are mimicked from left-to-right in the MDS diagram, as illustrated 
in Figure 2b.

In addition, the topology of phase connections in mineral 
network diagrams mirrors their phase relationships. For example, 
the “AFQ” ternary phase diagram for the system anorthite 
(CaAl2Si2O8)–forsterite (Mg2SiO4)–silica (SiO2) illustrates that 
quartz may coexist with anorthite and an intermediate mineral en-
statite (MgSiO3), but not with forsterite (Fig. 3a). The topology of 
this phase diagram is also embedded in the MDS diagram (Fig. 3b).

The phase relationships of igneous rocks have been well 
documented through decades of studies in experimental petrol-
ogy and thermochemical modeling, so the examples in Figures 2 
and 3 illustrate the necessary conformity of network diagrams to 
established phase relationships. However, numerous other min-
eralogical systems have not been investigated in this detail. Much 
work remains to be done, but we postulate that mineral network 
analysis of coexisting species in other complex natural chemical 
systems holds the prospect of revealing unknown phase relation-
ships through multi-dimensional analysis. In such analyses, care 
must be taken to ensure that connections between the mineral nodes 
actually represent equilibrium phase assemblages. In situations 
such as intrusive igneous rocks and cogenetic hydrothermal ore 
minerals, equilibrium formation is a safe assumption, and linked 
nodes will represent adjacent stability fields on the relevant phase 
diagram. However, greater care must be exercised when dealing 
with assemblages including secondary minerals such as oxidative 
weathering products, diagenesis, metamorphism, etc.

Cluster analysis and paragenetic modes
A valuable attribute of network diagrams is that the node rep-

resentations can incorporate additional dimensions of information 
through their size, color, shape, and patterning. In Figures 4 and 5b, 
we scaled node diameters and inter-node distances for Cr mineral 
species in the following way: If two minerals A and B occur at 
a and b localities, respectively, and they co-occur at c localities, 
then the node diameters of A and B are log2(a) and log2(b), and 
the distance of the link connecting A and B is [1 – c/min(a,b)], 
where min(a,b) is the smaller of a and b. If A and B always occur 
together then we assign a minimum distance of 0.1.

Cluster analysis employs mineral network data to identify 
subsets of closely related species—an approach that can reveal pre-
viously unrecognized relationships among species. For example, 
we performed cluster analysis on the 30 most common terrestrial 
Cr minerals. We included minerals that satisfy three criteria: (1) 
Cr occupies more than 50% of at least one symmetrically distinct 
crystal lattice site; (2) the mineral occurs at three or more locali-
ties; and (3) the mineral co-occurs with other Cr minerals at two 
or more localities. In Figure 4 we applied the Walktrap Algorithm 
(Pons and Latapy 2005) of the igraph package in R to mineral 
coexistence data in mindat.org to detect clusters of closely related 
Cr minerals. This approach is based on the analysis of random 
walks among links. Random walks are more likely to stay within 

a single cluster because there are more links within a cluster than 
links leading to different clusters. When we employ this algorithm 
to perform five-step random walks on the Cr mineral graph, the 
minerals separate naturally into four clusters, each of which can 
be associated with a different paragenetic mode. The largest of 
the four clusters includes 17 Cr3+ minerals, all of which are high-
temperature igneous, metamorphic, and hydrothermal species 
(group 1). Three additional clusters falling peripherally to this 
central cluster include all Cr6+ minerals, seven of which (group 2) 
form from low-temperature, oxidized hydrothermal fluids leaching 
Cr-rich igneous rocks. The remaining six Cr6+ minerals, which lie 
above the central cluster, are sedimentary species found in soils 
(group 3) and in desert environments (group 4). Cluster analysis 
is consistent with the observation that chromium in terrestrial 
Cr6+ minerals is probably sourced from Cr3+ reservoirs, either 
through hydrothermal leaching or oxidative weathering (e.g., 
Liu et al. 2017). We conclude that cluster analysis holds promise 

FigurE 3. The topologies of phase diagrams, such as the anorthite-
forsterite-quartz ternary solidus diagram (a), are mirrored in the 
topologies of mineral network diagrams (b). Ternary diagram after 
Anderson (1915).

a

b
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elements represent the number of localities where two minerals 
coexist and whose diagonal elements represent the total number 
of localities at which each mineral is found. As a preliminary step 
we imported these data into R as data frames and converted into 
two lists, one with nodes representing all the minerals in the data 
set, and the other with links representing coexistence relationships 
between the nodes. We created the list of nodes by extracting the 
row or column names of the data frame, each of which represents 
a mineral, and we produced the list of links by iterating over the 
upper or lower triangle of the matrix and copying the row name, 
column name, and computing a coexistence metric between the 
two minerals. We added additional fields to the nodes list, such as 
mineral compositions, the number of localities at which the mineral 
occurs, and/or structural classification of the mineral.

We combined these two lists and converted them into a Ja-
vascript Object Notation (JSON) file, which is stored along with 
a web page written in Hypertext Markup Language (HTML) 
and Javascript that uses functions from the D3 4.0 library. The 
data file is read from the file system and rendered when the page 
is opened in a web-browser. Our Javascript code generates the 
layout by performing a many body (n-body) simulation and con-
straining edge lengths to values that equal the coexistence metric 
multiplied by a constant to make the connections more apparent. 
We set node sizes to the binary logarithm of the abundance value 
of a mineral in the cases of Cu and igneous rocks diagrams, and 
the actual abundance values in the Cr diagram. Node colors in 
Figure 5 variously indicate the structural classification of the 
minerals (igneous network), paragenetic mode (Cr network), and 
composition (Cu network).

The mineral network diagrams in this study require data on 
coexisting minerals in individual rocks or from individual locali-
ties. We manually generated spreadsheets of coexisting minerals in 
igneous rocks from text and tables in Harker (1964) and Johannsen 
(1932–1938) as presented in Supplemental1 Information 1 and 2. 
We used a PERL script to construct spreadsheets of coexisting 
chromium and copper minerals, which are generated automati-
cally from data on coexisting species from localities recorded in 
the crowd-sourced mineral web site mindat.org. We define Cr- or 
Cu-minerals as those reported in the official IMA list of minerals 
at rruff.info/ima. For each pair of coexisting minerals we gener-
ated a file that contains all localities at which those two minerals 
occur. A second program reads the assembled files to obtain the 
number of localities at which each pair occurs and outputs these 
counts in matrix form.

An important feature of browser-based force-directed graphs 
is that they can be manipulated with a computer mouse—indi-
vidual nodes can be “pulled aside,” thus deforming the network 
and illustrating the number and nature of links to other nodes 
(see movies in Supplemental1 Information 4, 5, and 6). Figure 5 
presents static images of three contrasting force-directed graphs: 
(1) 51 common rock-forming igneous minerals; (2) 58 terrestrial 
minerals of chromium; and (3) 664 minerals of copper.

In Figure 5a, which represents connections among 51 igneous 
minerals, the node colors indicate broad compositional groups 
(see Figure for key). Note that while colors are largely mixed, 
the red (quartz and feldspar minerals) and orange (feldspathoids 
and zeolite mineral) nodes tend to concentrate near the lower and 
upper halves of the network, respectively—a feature that reflects 

FigurE 4. Cluster analysis of 30 common chromium-bearing 
minerals reveals segregation into four groups. The central cluster 
(group 1) includes 17 Cr3+ species formed through igneous, metamorphic, 
or hydrothermal processes. The left-hand cluster (group 2) includes seven 
Cr6+ species formed through hydrothermal alteration, whereas the two 
smaller clusters (groups 3 and 4) include chromate minerals precipitated 
in soils and desert environments. Black lines indicate coexistence of 
minerals within a cluster, and red lines indicate coexistence between 
minerals of neighboring clusters.

for revealing patterns of diagenesis and distribution in a variety 
of mineral systems.

Force-directed mineral graphs
An important potential contribution of mineral network 

analysis lies in the simultaneous visualization and study of rela-
tionships among scores or hundreds of minerals that are related 
by composition, age, tectonic setting, deposit type, or numerous 
other variables. Force-directed graphs (Fig. 5), which represent 
the distribution of nodes as a dynamic network with balanced 
spring-like interactions among nodes, are particularly useful in 
this regard. We generate these graphs by algorithms that run 
through several iterations, displacing the nodes according to fic-
tive attractive and repulsive forces that they exert on each other, 
until a layout is found that minimizes the “energy” of the system 
and possibly satisfies other constraints such as drawing connected 
nodes at certain separations. These methods are implemented in 
highly customizable modules in multiple programming languages, 
such as Javascript and R, making it possible to render the graphs 
through several interfaces including web browsers.

In Figure 5, we created the web-browser-based force-directed 
graphs using the D3 4.0 d3-force module (Bostock et al. 2011), 
which simulates physical forces using velocity Verlet integration 
(Verlet 1967) and implements the Barnes-Hut approximation 
(Barnes and Hut 1986) for performing n-body simulations, similar 
to those of molecular or planetary systems. For each of the three 
graphs we compiled a symmetric matrix whose non-diagonal 



MORRISON ET AL.: NETWORK ANALYSIS OF MINERALOGICAL SYSTEMS 1593

the natural avoidance of quartz and feldspathoids. Node colors 
in Figure 5b for chromium minerals correspond to paragenetic 
modes; note the strong clustering of nodes by color—an obser-
vation that parallels the cluster analysis in Figure 4. Node colors 
in Figure 5c for copper minerals indicate mineral compositions 
separated according to the presence or absence of sulfur or oxy-
gen. Strong segregation by color reveals clustering according to 
these compositional variables for sulfides, sulfates, and oxygen-
bearing species.

Network metrics
An important attribute of networks is the ability to compare 

and contrast their topological characteristics through the use of 
many quantitative network metrics (e.g., Newman 2013; Table 1). 
For example, a network’s edge density D, defined as the ratio of 
the number of observed links to the maximum possible number of 
links, quantifies the extent to which a network is interconnected. 
For a network with N nodes and L links:

D = 2L/[N(N – 1)].    (1)

D can vary from 0 in a network with no links to 1 for a fully 
connected network. For mineral networks, 0 means every mineral 
occurs by itself, whereas 1 means every mineral co-occurs with 
every other mineral.

Freeman network centralization or degree centralization, FNC, 
is one of several measures of how many nodes play central roles 
in the network. In a network of N nodes, degree centralization for 
each node i is the number of links to other nodes, or node degree, 
deg(i). Freeman network centralization is defined as:

FNC=
degmax−deg(i)
(N−1)(N−2)i=1

N∑   (2)

in which degmax is the maximum degree node. FNC can vary from 
0 to 1; in a mineral network, low centralization indicates that min-
erals are uniformly interconnected, whereas high centralization 
indicates that only one or a few minerals are highly connected.

Transitivity, T, is defined by the ratio of the number of 
loops of length three and the number of paths of length two in 
a network. In mineral networks, 0 means that minerals co-occur 
only as pairs and 1 means that each mineral co-occurs with at 
least two others.

Diameter, d, of a network with N nodes is defined as the 
maximum value of the shortest path (i.e., “degree of separa-
tion”) between any two nodes in the network, as determined by 
the number of edges and the average edge length between the 
two nodes.

Mean distance, MD, of a network with N nodes indicates the 
average path length, calculated from the shortest paths between 
all possible pairs of nodes. In a mineral network, MD represents 
the average separation between mineral pairs.

The three force-directed mineral networks illustrated in Fig-

Table 1. Network metrics for force-directed graphs (see Fig. 5)
Mineral Density Centralization Transitivity Diameter Mean 
  system         distance
Igneous 0.64 0.34 0.77 2 1.36
  minerals
Cr minerals 0.05 0.33 0.44 6 2.65
Cu minerals 0.12 0.68 0.48 4 1.93

FigurE 5. Force-directed network graphs of minerals: (a) 51 rock-
forming igneous minerals sorted by structural groups; (b) 58 chromium 
minerals sorted by paragenetic mode; (c) 664 copper minerals sorted by 
composition. See Supplemental1 Information 4, 5, and 6, respectively, for 
animations of these three dynamic graphs.

a

b

c
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ure 5 differ significantly in their network metrics. The igneous 
mineral network (Fig. 5a) is relatively dense with high transitivity 
(D = 0.64; T = 0.77), while the network is decentralized (FNC = 
0.34) and compact (d = 2; MD = 1.36). Two minerals, biotite and 
magnetite, have links to all other minerals; thus, manipulating 
the nodes for biotite and magnetite (see movie in Supplemental1 
Information 4) results in a rapid return to the initial equilibrium 
network configuration with those nodes appearing near the center 
of the network. Manipulation of quartz (near the bottom of the 
network) and nepheline (near the top), by contrast, illustrates the 
avoidance of those two minerals, which do not co-occur in igne-
ous rocks. We postulate that the relatively high density and low 
diameter of this network are manifestations of high-temperature 
equilibrium associated with intrusive igneous rocks, for which a 
relatively few common rock-forming minerals occur in several 
lithologies.

The network for 58 terrestrial chromium minerals (Fig. 5b) 
contrasts with that for igneous minerals in that it possesses 
much lower density and transitivity (D = 0.05; T = 0.48), and 
greater diameter and mean distance (d = 6; MD = 2.65). These 
values are consistent with the cluster analysis (Fig. 4), which 
revealed four groups of minerals that are largely separate from 
each other. A striking feature of this Cr mineral network is the 
segregation of nodes by colors, which represent paragenetic 
modes (see figure caption). As revealed by cluster analysis, 
chromium minerals occurring through weathering, formed 
during metamorphism, found in sediments, or crystallized 
through igneous processes tend not to co-occur and thus ap-
pear as somewhat isolated clusters in Figure 5b. On the other 
hand, hydrothermal Cr minerals are much more interconnected 
with phases formed through other paragenetic processes. Such 
complex relationships among 58 minerals become obvious 
through manipulation of a force-directed graph (see movie 
in Supplemental1 Information 5) and exemplify the wealth of 
information contained in these network diagrams.

Copper minerals (Fig. 5c) provide a third, contrasting ex-
ample of a mineral network with relatively low density and 
transitivity (D = 0.12; T = 0.44), but high centrality (FNC = 
0.68), and intermediate diameter and mean distance (d = 4; MD 
= 1.93). Aspects of the coexistence of copper minerals are re-
vealed in Figure 5c, which is colored according to the presence 
or absence of the two principal anions, O and S. A strong degree 
of segregation is seen for sulfides (red), sulfates (orange), and 
minerals with O but not S (blue). By contrast, copper minerals 
with neither O nor S (green) are much more widely distributed, 
as they are found associated with a variety of other copper miner-
als. Manipulations of the nodes for the two most interconnected 
copper minerals, chalcopyrite and malachite, reveal connections 
to all regions of the graph and result in significant distortion of 
the entire network (Supplemental1 Information 6). Manipulation 
of the node for native copper, on the other hand, shows greater 
connectivity to oxides and sulfates than to sulfides—an insight 
not readily obvious from tables of coexisting mineral species (and 
a finding that will be explored in more detail in a forthcoming 
study). The ability to view and interrogate simultaneously and 
dynamically the relationships among hundreds of mineral spe-
cies underscores the power of force-directed mineral network 
visualizations.

Bipartite networks
Bipartite networks incorporate two types of nodes and thus 

reveal information complementary to the previous examples 
(e.g., Asratian et al. 1998). Of special interest in mineralogy are 
network diagrams that include nodes for both mineral species and 
their localities, with links connecting localities to mineral species 
found at those localities. In Figures 6a and 6b we present bipartite 
networks for copper minerals for two contrasting geological time 
intervals, from the Archean Eon (4.0 to 2.5 Ga) and the Cenozoic 
Era (66 Ma to present), respectively. We color mineral nodes 
according to mineral compositions with respect to the presence 
or absence of oxygen and sulfur, as in Figure 5c. Locality nodes, 
which in this case represent countries or broad geographic regions, 
appear in black.

As with the previously demonstrated force-directed mineral 
networks, we employed mineral/locality data to produce the bipar-
tite graphs. We imported data into R where two sets of nodes were 
extracted, one containing mineral species and the other containing 
the localities where these minerals occur. We combined the two 
sets of nodes into one list and added an attribute to each item in 
the list, determining its type as either mineral or locality. We then 
generated a list of links from the data such that each link connects 
a mineral species to a locality. Following the same procedure as 
with the force-directed graphs created using the D3 4.0 library, 
we combined the data structures representing the nodes and links 
into a JSON file linked to an HTML page such that the diagrams 
can be rendered and manipulated in a web browser.

These striking bipartite networks provide simultaneous visual 
representations of data on the diversity and abundances of mineral 
species, as well as their geographical distributions, compositional 
characteristics, and geological ages. As such, these diagrams 
demonstrate the potential of network analysis to explore simul-
taneously numerous parameters related to mineral diversity and 
distribution and thus to reveal previously unrecognized aspects 
of mineral evolution and mineral ecology. Insights from these 
visualizations include:

• In both networks the nodes of the force-directed graph 
self-organize into a distinctive pattern with black locality 
nodes forming an “O”- or “U”-shape arrangement. The 
commoner minerals, those found at numerous localities, 
appear as colored nodes near the center of these diagrams, 
whereas a significantly greater number of rare minerals 
that occur at only one or two localities plot as colored 
nodes in clusters and “fans” of minerals arranged around 
the periphery of the diagram. This unanticipated elegant 
geometry is the visual manifestation of a large number of 
rare events (LNRE) frequency distribution that character-
izes Earth’s near-surface mineralogy (Hazen et al. 2015; 
Hystad et al. 2015).

• The Archean bipartite network (Fig. 6a), with 97 Cu 
minerals from 45 broad geographical localities, reveals that 
sulfide minerals dominated copper mineralogy prior to the 
Great Oxidation Event (e.g., Hazen et al. 2008; Canfield 
2014; Lyons et al. 2014). Sulfides represent 17 (74%) of 
the 23 common Archean copper minerals located “inside” 
the ring of black locality nodes and 32 (50%) of the 64 rare 
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minerals located around the periphery. Note also the rela-
tive paucity of sulfate minerals—only 7 species (7%), all 
of them rare, out of 97 Archean copper minerals.

• The Cenozoic bipartite network for copper minerals 
contrasts with that of the Archean Eon in several respects. 
The significant increase in the number of identified min-
eral species (colored nodes), from 97 to almost 400, is 
to be expected when comparing Earth’s recent mineral-
ogy with the scant record of rocks more than 2.5 billion 
years old. However, there are also striking and previously 
unrecognized differences in the distributions of mineral 
compositions from these two geological intervals. Sulfide 
minerals (red nodes) continue to make up a significant frac-
tion of the most common species located near the center 
of the diagram. Of the approximately 100 mineral nodes 
located within the “U” of black locality nodes, more than 
40 are sulfide minerals. Furthermore, most of these phases 
are concentrated at the “bottom” of the “U”—a position 
representing the most widely distributed copper minerals. 
Of the remaining common Cu phases in the central region, 
most are carbonate, phosphate, and other minerals that 
contain oxygen but not sulfur (blue nodes concentrated in 
the “upper” region inside the “U”), perhaps reflecting the 
oxygenation by photosynthesis of Earth’s atmosphere and 
oceans, and the corresponding generation of novel oxidized 
copper mineral species.

• Peripheral (i.e., rare) copper minerals from the Ceno-
zoic Era differ markedly in composition from those of the 
Archean Eon. Sulfide minerals account for only about 50 
(<20%) of the more than 280 rare species, whereas at least 
210 (~75%) oxygen-bearing minerals, 60 of them sulfates, 
decorate the diagram in sprays and clusters of phases known 
from only one or two geographic regions.

These intriguing insights regarding copper mineral evolu-
tion and ecology have been hidden among large data tables of 
more than 600 species from more than 10 000 localities, rep-
resenting more than 100 000 individual mineral-locality data 
(http://rruff.info/ima/; https://www.mindat.org/). Research now in 
progress will investigate these intriguing trends for copper mineral 
evolution and ecology in greater detail, while searching for pat-
terns that might point to the prediction of new copper minerals 
and ore deposits.

COnCluding rEMarks

Network analysis provides mineralogists and petrologists with 
a dynamic, multi-dimensional, quantitative visualization approach 
to explore complex and otherwise hidden patterns of diversity 
and distribution in systems of numerous minerals—information 
that heretofore has been buried in large and growing mineral data 
resources. Open access data repositories now document more than 
5200 mineral species (rruff.info/ima), from 275 000 localities, 
incorporating approximately one million mineral/locality data 
(mindat.org). It is thus possible to employ mineral network visual-
izations to quantitatively investigate patterns of coexistence, phase 
relationships, reaction pathways, network metrics, frequency dis-
tributions, and deep-time evolution of virtually any mineral group.

FigurE 6. Bipartite networks for copper minerals from the Archean 
Eon (a) and Cenozoic Era (b) reveal distinctive patterns of mineral 
diversity and distribution through space and time. Black nodes represent 
localities, whereas colored nodes represent mineral species linked 
to those localities. The distinctive pattern of an “O”- or “U”-shape 
arrangement of localities with relatively few common minerals in the 
center area and a greater number of rare minerals in peripheral positions 
conforms to a Large Number of Rare Events frequency distribution 
(Hazen et al. 2015; Hystad et al. 2015). Note also the increase in mineral 
diversity, as well as the evolution of mineral compositions, from a to b.

We suggest that further investigation of mineral networks 
will reveal previously hidden patterns of species coexistence 
and clustering based, for example, on structure type, chemistry, 
age, solubility, hardness and other mechanical properties, redox 
state, depth and temperature of formation, year and method of 
mineral discovery, and paragenetic mode. Mineral metadata, 
furthermore, permit exploration of mineral subsets through filter-
ing by geographic region, tectonic setting, co-occurrence with 
varied biozones, economic resources, environmental character-
istics, and other key parameters. In addition, networks are now 
being generated for minerals on Mars, the Moon, and Vesta (as 
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represented by “HED” achondrite meteorites) with the motiva-
tion to compare and contrast mineral evolution and ecology of 
different planets and moons.

Given the inherent beauty and richness of these visualization 
tools, it is perhaps easy to become distracted from the varied, 
multi-dimensional, and as yet unexplored aspects of mineralogy 
that networks promise to illuminate. We look to a future when 
the consolidated network of all 5200 mineral species, distrib-
uted among hundreds of thousands of localities, will offer an 
unparalleled open access research tool. We conclude that mineral 
network analysis, by combining the potential of big data miner-
alogy with a dynamic and accessible visual esthetic, represents 
a powerful new method to explore fundamental problems in 
mineralogy and petrology.
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