SPECIAL COLLECTION: APATITE: A COMMON MINERAL, UNCOMMONLY VERSATILE

The crystal structure of turneaureite, Ca₅(AsO₄)₃Cl, the arsenate analog of chlorapatite, and its relationships with the arsenate apatites johnbaumite and svabite

CRISTIAN BIAGIONI^{1,*}, FERDINANDO BOSI^{2,3}, ULF HÅLENIUS⁴, AND MARCO PASERO¹

¹Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
²Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
³CNR—Istituto di Geoscienze e Georisorse, UOS Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
⁴Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden

ABSTRACT

The crystal structure of turneaureite, ideally $Ca_5(AsO_4)_3Cl$, was studied using a specimen from the Brattfors mine, Nordmark, Värmland, Sweden, by means of single-crystal X-ray diffraction data. The structure was refined to $R_1 = 0.017$ on the basis of 716 unique reflections with $F_0 > 4\sigma(F_0)$ in the $P6_3/m$ space group, with unit-cell parameters a = 9.9218(3), c = 6.8638(2) Å, V = 585.16(4) Å³. The chemical composition of the sample, determined by electron-microprobe analysis, is (in wt%; average of 10 spot analyses): SO₃ 0.22, P₂O₅ 0.20, V₂O₅ 0.01, As₂O₅ 51.76, SiO₂ 0.06, CaO 41.39, MnO 1.89, SrO 0.12, BaO 0.52, PbO 0.10, Na₂O 0.02, F 0.32, Cl 2.56, H₂O_{cale} 0.58, O(\equiv F+Cl) -0.71, total 99.04. On the basis of 13 anions per formula unit, the empirical formula corresponds to (Ca_{4.82}Mn_{0.17}Ba_{0.02}Sr_{0.01})_{25.02} (As_{2.94}P_{0.02}Si_{0.01})_{22.99}O₁₂[Cl_{0.47}(OH)_{0.42}F_{0.11}]_{21.00}.

Turneaureite is topologically similar to the other members of the apatite supergroup: columns of face-sharing M1 polyhedra running along **c** are connected through TO_4 tetrahedra with channels hosting M2 cations and X anions. Owing to its particular chemical composition, the studied turneaureite can be considered as a ternary calcium arsenate apatite; consequently it has several partially filled anion sites within the anion columns. Polarized single-crystal FTIR spectra of the studied sample indicate stronger hydrogen bonding and less diverse short-range atom arrangements around (OH) groups in turneaureite as compared to the related minerals johnbaumite and svabite. An accurate knowledge of the atomic arrangement of this apatite-remediation mineral represents an improvement in our understanding of minerals able to sequester and stabilize heavy metals such as arsenic in polluted areas.

Keywords: Turneaureite, calcium arsenate, apatite supergroup, crystal structure, infrared spectroscopy, Sweden, Apatite: A common mineral, uncommonly versatile